402,696 research outputs found

    CRC for Construction Innovation : annual report 2008-2009

    Get PDF

    Teaching electronics-ICT : from focus and structure to practical realizations

    Get PDF
    We present a four-year electronics-ICT educational master program at Ghent University in Belgium. The students develop knowledge and skills from novice to experienced electronic circuit designers. In the corresponding topics, the immersion into engineering problems is deepened. The horizontal and vertical alignment of courses in the four-year master program at our university is discussed. The curriculum of the four-year master program is highly projectoriented and all topics are clustered around a well-considered set of standards. This clustering supports the logical structure of the program, with students gradually acquiring the necessary competences. All standards and their mutual interaction are extensively discussed in the paper. We also focus on four design-implement projects included in the electronics-ICT program, explicitly following CDIO-guidelines. Whereas the first-year project has a limited level of difficulty, the challenges increase significantly in the course of the next years. Students learn that product design is an iterative process on different levels, where the design strategy can be changed continuously based on important and crucial feedback. Different evaluations have demonstrated that our students are not only aware of CDIO-principles, but are also convinced of the quality of the results obtained by following the standards

    Developing a Research Culture and Scholarship Plan in Information Studies

    Get PDF
    Information research may take many forms. When the researchers are situated within an information technology faculty, there is a natural orientation towards the technology and the systems that make possible the use of the technology. Despite this, a focus on information itself and its effective utilisation can be achieved in an environment that may otherwise be more concerned with the technology than the information that the technology carries. This focus can contribute to research that has a systems orientation, as well as both foster and be fostered by interdisciplinary work in areas such as education, management and psychology. Here we explain the development of a research program in ‘information use’ within the Socio-technical systems theme of the School of Information Systems at QUT. Our emphasis is on the processes – research supervision, industry linkage, consultancy, grant development, conference contribution and publication - that have advanced the development of the research group. We also provide a summary of research projects in the form of models that are being developed to help illuminate the research frameworks

    Supporting community engagement through teaching, student projects and research

    Get PDF
    The Education Acts statutory obligations for ITPs are not supported by the Crown funding model. Part of the statutory role of an ITP is “... promotes community learning and by research, particularly applied and technological research ...” [The education act 1989]. In relation to this a 2017 TEC report highlighted impaired business models and an excessive administrative burden as restrictive and impeding success. Further restrictions are seen when considering ITPs attract < 3 % of the available TEC funding for research, and ~ 20 % available TEC funding for teaching, despite having overall student efts of ~ 26 % nationally. An attempt to improve performance and engage through collaboration (community, industry, tertiary) at our institution is proving successful. The cross-disciplinary approach provides students high level experience and the technical stretch needed to be successful engineers, technologists and technicians. This study presents one of the methods we use to collaborate externally through teaching, student projects and research

    The collective consciousness of Information Technology research: The significance and value of research projects. A. The views of IT researchers

    Get PDF
    This research seeks to reveal the different perceptual worlds in a research community, with the longterm intent of fostering increased understanding and hence collaboration. In the relatively new field of information technology (IT) research, available evidence suggests that a shared understanding of the research object or territory does not yet exist. This has led to the development of different perceptions amongst IT researchers of what constitutes significant and valuable research. A phenomenological approach is used to elicit data from a diverse range of IT researchers in semistructured interviews. This data is presented to show (1) the variation in meaning associated with the idea of significance and value and (2) the awareness structures through which participants experience significance and value. An Outcome Space represents the interrelation between those different ways of seeing, revealing a widening awareness. Five categories of ways of seeing the significance and value of research projects were found: The Personal Goals Conception, The Research Currency Conception, The Design of the Research Project Conception, The Outcomes for the Technology End User Conception and The Solving Real-World Problems Conception. These are situated within three wider perceptual boundaries: The Individual, The Research Community and Humankind. The categories are described in detail, demonstrated with participants’ quotes and illustrated with diagrams. A tentative comparison is made between this project and a similar investigation of IT professionals’ ways of seeing the significance and value of IT research projects. Finally, some recommendations for further research are made

    The collective consciousness of Information Technology research: The significance and value of research projects. B. The views of IT industry professionals

    Get PDF
    This research seeks to reveal the different perceptual worlds in a research community, with the longterm intent of fostering increased understanding and hence collaboration. In the relatively new field of information technology (IT) research, available evidence suggests that a shared understanding of the research object or territory does not yet exist. This has led to the development of different perceptions amongst IT researchers of what constitutes significant and valuable research. Phenomenological methodology is used to elicit data from a diverse range of IT industry professionals in semi-structured interviews. This data is presented to show (1) the variation in meaning associated with the idea of significance and value and (2) the awareness structures through which participants experience significance and value. An Outcome Space represents the interrelation between those different ways of seeing, revealing a widening awareness. Five categories of ways of seeing the significance and value of research projects were found: The Personal Goals Conception, The Commercial Goals Conception, The Outcomes for the Technology End User Conception, The Solving Real-World Problems Conception and The Design of the Research Project Conception. These are situated within three wider perceptual boundaries: The Individual, The Enterprise and Society. The categories are described in detail, demonstrated with participants’ quotes and illustrated with diagrams. A tentative comparison is made between this project and a similar investigation of IT researchers’ ways of seeing the significance and value of IT research projects. Finally, some recommendations for further research are made

    STEM futures and practice, can we teach STEM in a more meaningful and integrated way?

    Get PDF
    Integrating Science, Technology, Engineering and Mathematics (STEM) subjects can be engaging for students, can promote problem-solving and critical thinking skills and can help build real-world connections. However, STEM has long been an area of some confusion for some educators. While they can see many of the conceptual links between the various domains of knowledge they often struggle to meaningfully integrate and simultaneously teach the content and methodologies of each these areas in a unified and effective way for their students. Essentially the question is;how can the content and processes of four disparate and yet integrated learning areas be taught at the same time? How can the integrity of each of the areas be maintained and yet be learnt in a way that is complementary? Often institutional barriers exitin schools and universities to the integration of STEM. Organizationally, at a departmental and administrative level, the teaching staff may be co-located, but when it comes to classroom practice or the teaching and learning of these areas they are usually taught very separately. They are usually taught in different kinds of spaces, in different ways (using different pedagogical approaches) and at different times. But is this the best way for students to engage with the STEM areas of learning? How can we make learning more integrated, meaningful and engaging for the students
    • …
    corecore