763 research outputs found

    Outcome-Oriented Predictive Process Monitoring to Predict Unplanned ICU Readmission in MIMIC-IV Database

    Get PDF
    Unplanned readmission entails unnecessary risks for patients and avoidable waste of medical resources, especially intensive care unit (ICU) readmissions, which increases likelihood of length of stay and more severely mortality. Identifying patients who are likely to suffer unplanned ICU readmission can benefit both patients and hospitals. Readmission is typically predicted by statistical features extracted from completed ICU stays. The development of predictive process monitoring (PPM) technique aims to learn from complete traces and predict the outcome of ongoing ones. In this paper, we adopt PPM to view ICU stay from electronic health record (EHR) as a continuous process trace to enable us to discover clinical and also process features to predict likelihood of readmission. Using events logs extracted from MIMIC-IV database, the results show that our approach can achieve up to 65% accuracy during the early stage of each ICU stay and demonstrate the feasibility of applying PPM to unplanned ICU readmission prediction

    Encoding High-Level Control-Flow Construct Information for Process Outcome Prediction

    Get PDF
    Outcome-oriented predictive process monitoring aims at classifying a running process execution according to a given set of categorical outcomes, leveraging data on past process executions. Most previous studies employ Recurrent Neural Networks to encode the sequence of events, without taking the structure of the process into account. However, process executions typically involve complex control-flow constructs, like parallelism and loops. Different executions of these constructs can be recorded as different event sequences in the event log. This makes it challenging for a recurrent classifier to detect potential relations between a high-level control-flow construct and the prediction target. This is especially true in the presence of high variability in process executions and lack of data. In this paper, we propose a novel approach which encodes the control-flow construct each event belongs to. First, we exploit Local Process Model mining techniques to extract frequently occurring control-flow patterns from the event log. Then, we employ different encoding techniques to enrich an on-going process execution with information related to the extracted control-flow patterns. We tested the proposed method on nine real-life event logs. The obtained results show consistent improvements in the prediction performance

    Can recurrent neural networks learn process model structure?

    Full text link
    Various methods using machine and deep learning have been proposed to tackle different tasks in predictive process monitoring, forecasting for an ongoing case e.g. the most likely next event or suffix, its remaining time, or an outcome-related variable. Recurrent neural networks (RNNs), and more specifically long short-term memory nets (LSTMs), stand out in terms of popularity. In this work, we investigate the capabilities of such an LSTM to actually learn the underlying process model structure of an event log. We introduce an evaluation framework that combines variant-based resampling and custom metrics for fitness, precision and generalization. We evaluate 4 hypotheses concerning the learning capabilities of LSTMs, the effect of overfitting countermeasures, the level of incompleteness in the training set and the level of parallelism in the underlying process model. We confirm that LSTMs can struggle to learn process model structure, even with simplistic process data and in a very lenient setup. Taking the correct anti-overfitting measures can alleviate the problem. However, these measures did not present themselves to be optimal when selecting hyperparameters purely on predicting accuracy. We also found that decreasing the amount of information seen by the LSTM during training, causes a sharp drop in generalization and precision scores. In our experiments, we could not identify a relationship between the extent of parallelism in the model and the generalization capability, but they do indicate that the process' complexity might have impact

    Modelling customers credit card behaviour using bidirectional LSTM neural networks

    Get PDF
    With the rapid growth of consumer credit and the huge amount of financial data developing effective credit scoring models is very crucial. Researchers have developed complex credit scoring models using statistical and artificial intelligence (AI) techniques to help banks and financial institutions to support their financial decisions. Neural networks are considered as a mostly wide used technique in finance and business applications. Thus, the main aim of this paper is to help bank management in scoring credit card clients using machine learning by modelling and predicting the consumer behaviour with respect to two aspects: the probability of single and consecutive missed payments for credit card customers. The proposed model is based on the bidirectional Long-Short Term Memory (LSTM) model to give the probability of a missed payment during the next month for each customer. The model was trained on a real credit card dataset and the customer behavioural scores are analysed using classical measures such as accuracy, Area Under the Curve, Brier score, Kolmogorov–Smirnov test, and H-measure. Calibration analysis of the LSTM model scores showed that they can be considered as probabilities of missed payments. The LSTM model was compared to four traditional machine learning algorithms: support vector machine, random forest, multi-layer perceptron neural network, and logistic regression. Experimental results show that, compared with traditional methods, the consumer credit scoring method based on the LSTM neural network has significantly improved consumer credit scoring

    Enhance Representation Learning of Clinical Narrative with Neural Networks for Clinical Predictive Modeling

    Get PDF
    Medicine is undergoing a technological revolution. Understanding human health from clinical data has major challenges from technical and practical perspectives, thus prompting methods that understand large, complex, and noisy data. These methods are particularly necessary for natural language data from clinical narratives/notes, which contain some of the richest information on a patient. Meanwhile, deep neural networks have achieved superior performance in a wide variety of natural language processing (NLP) tasks because of their capacity to encode meaningful but abstract representations and learn the entire task end-to-end. In this thesis, I investigate representation learning of clinical narratives with deep neural networks through a number of tasks ranging from clinical concept extraction, clinical note modeling, and patient-level language representation. I present methods utilizing representation learning with neural networks to support understanding of clinical text documents. I first introduce the notion of representation learning from natural language processing and patient data modeling. Then, I investigate word-level representation learning to improve clinical concept extraction from clinical notes. I present two works on learning word representations and evaluate them to extract important concepts from clinical notes. The first study focuses on cancer-related information, and the second study evaluates shared-task data. The aims of these two studies are to automatically extract important entities from clinical notes. Next, I present a series of deep neural networks to encode hierarchical, longitudinal, and contextual information for modeling a series of clinical notes. I also evaluate the models by predicting clinical outcomes of interest, including mortality, length of stay, and phenotype predictions. Finally, I propose a novel representation learning architecture to develop a generalized and transferable language representation at the patient level. I also identify pre-training tasks appropriate for constructing a generalizable language representation. The main focus is to improve predictive performance of phenotypes with limited data, a challenging task due to a lack of data. Overall, this dissertation addresses issues in natural language processing for medicine, including clinical text classification and modeling. These studies show major barriers to understanding large-scale clinical notes. It is believed that developing deep representation learning methods for distilling enormous amounts of heterogeneous data into patient-level language representations will improve evidence-based clinical understanding. The approach to solving these issues by learning representations could be used across clinical applications despite noisy data. I conclude that considering different linguistic components in natural language and sequential information between clinical events is important. Such results have implications beyond the immediate context of predictions and further suggest future directions for clinical machine learning research to improve clinical outcomes. This could be a starting point for future phenotyping methods based on natural language processing that construct patient-level language representations to improve clinical predictions. While significant progress has been made, many open questions remain, so I will highlight a few works to demonstrate promising directions

    Artificial intelligence for clinical decision support for monitoring patients in cardiovascular ICUs: a systematic review

    Get PDF
    Background: Artificial intelligence (AI) and machine learning (ML) models continue to evolve the clinical decision support systems (CDSS). However, challenges arise when it comes to the integration of AI/ML into clinical scenarios. In this systematic review, we followed the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA), the population, intervention, comparator, outcome, and study design (PICOS), and the medical AI life cycle guidelines to investigate studies and tools which address AI/ML-based approaches towards clinical decision support (CDS) for monitoring cardiovascular patients in intensive care units (ICUs). We further discuss recent advances, pitfalls, and future perspectives towards effective integration of AI into routine practices as were identified and elaborated over an extensive selection process for state-of-the-art manuscripts. Methods: Studies with available English full text from PubMed and Google Scholar in the period from January 2018 to August 2022 were considered. The manuscripts were fetched through a combination of the search keywords including AI, ML, reinforcement learning (RL), deep learning, clinical decision support, and cardiovascular critical care and patients monitoring. The manuscripts were analyzed and filtered based on qualitative and quantitative criteria such as target population, proper study design, cross-validation, and risk of bias. Results: More than 100 queries over two medical search engines and subjective literature research were developed which identified 89 studies. After extensive assessments of the studies both technically and medically, 21 studies were selected for the final qualitative assessment. Discussion: Clinical time series and electronic health records (EHR) data were the most common input modalities, while methods such as gradient boosting, recurrent neural networks (RNNs) and RL were mostly used for the analysis. Seventy-five percent of the selected papers lacked validation against external datasets highlighting the generalizability issue. Also, interpretability of the AI decisions was identified as a central issue towards effective integration of AI in healthcare

    Outcome Prediction from Behaviour Change Intervention Evaluations using a Combination of Node and Word Embedding

    Get PDF
    Findings from randomized controlled trials (RCTs) of behaviour change interventions encode much of our knowledge on intervention efficacy under defined conditions. Predicting outcomes of novel interventions in novel conditions can be challenging, as can predicting differences in outcomes between different interventions or different conditions. To predict outcomes from RCTs, we propose a generic framework of combining the information from two sources - i) the instances (comprised of surrounding text and their numeric values) of relevant attributes, namely the intervention, setting and population characteristics of a study, and ii) abstract representation of the categories of these attributes themselves. We demonstrate that this way of encoding both the information about an attribute and its value when used as an embedding layer within a standard deep sequence modeling setup improves the outcome prediction effectiveness

    Real-Time Purchase Prediction Using Retail Video Analytics

    Get PDF
    The proliferation of video data in retail marketing brings opportunities for researchers to study customer behavior using rich video information. Our study demonstrates how to understand customer behavior of multiple dimensions using video analytics on a scalable basis. We obtained a unique video footage data collected from in-store cameras, resulting in approximately 20,000 customers involved and over 6,000 payments recorded. We extracted features on the demographics, appearance, emotion, and contextual dimensions of customer behavior from the video with state-of-the-art computer vision techniques and proposed a novel framework using machine learning and deep learning models to predict consumer purchase decision. Results showed that our framework makes accurate predictions which indicate the importance of incorporating emotional response into prediction. Our findings reveal multi-dimensional drivers of purchase decision and provide an implementable video analytics tool for marketers. It shows possibility of involving personalized recommendations that would potentially integrate our framework into omnichannel landscape
    • …
    corecore