52 research outputs found

    A novel case-based reasoning approach to radiotherapy dose planning

    Get PDF
    In this thesis, novel Case-Based Reasoning (CBR) methods were developed to be included in CBRDP (Case-Based Reasoning Dose Planner) -an adaptive decision support system for radiotherapy dose planning. CBR is an artificial intelligence methodology which solves new problems by retrieving solutions to previously solved similar problems stored in a case base. The focus of this research is on dose planning for prostate cancer patients. The records of patients successfully treated in the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK, were stored in a case base and were exploited using case-based reasoning for future decision making. After each successful run of the system, a group based Simulated Annealing (SA) algorithm automatically searches for an optimal/near optimal combination of feature weights to be used in the future retrieval process of CBR. A number of research issues associated with the prostate cancer dose planning problem and the use of CBR are addressed including: (a) trade-off between the benefit of delivering a higher dose of radiation to cancer cells and the risk to damage surrounding organs, (b) deciding when and how much to violate the limitations of dose limits imposed to surrounding organs, (c) fusion of knowledge and experience gained over time in treating patients similar to the new one, (d) incorporation of the 5 years Progression Free Probability and success rate in the decision making process and (e) hybridisation of CBR with a novel group based simulated annealing algorithm to update knowledge/experience gained in treating patients over time. The efficiency of the proposed system was validated using real data sets collected from the Nottingham University Hospitals. Experiments based on a leave-one-out strategy demonstrated that for most of the patients, the dose plans generated by our approach are coherent with the dose plans prescribed by an experienced oncologist or even better. This system may play a vital role to assist the oncologist in making a better decision in less time; it incorporates the success rate of previously treated similar patients in the dose planning for a new patient and it can also be used in teaching and training processes. In addition, the developed method is generic in nature and can be used to solve similar non-linear real world complex problems

    A novel case-based reasoning approach to radiotherapy dose planning

    Get PDF
    In this thesis, novel Case-Based Reasoning (CBR) methods were developed to be included in CBRDP (Case-Based Reasoning Dose Planner) -an adaptive decision support system for radiotherapy dose planning. CBR is an artificial intelligence methodology which solves new problems by retrieving solutions to previously solved similar problems stored in a case base. The focus of this research is on dose planning for prostate cancer patients. The records of patients successfully treated in the Nottingham University Hospitals NHS Trust, City Hospital Campus, UK, were stored in a case base and were exploited using case-based reasoning for future decision making. After each successful run of the system, a group based Simulated Annealing (SA) algorithm automatically searches for an optimal/near optimal combination of feature weights to be used in the future retrieval process of CBR. A number of research issues associated with the prostate cancer dose planning problem and the use of CBR are addressed including: (a) trade-off between the benefit of delivering a higher dose of radiation to cancer cells and the risk to damage surrounding organs, (b) deciding when and how much to violate the limitations of dose limits imposed to surrounding organs, (c) fusion of knowledge and experience gained over time in treating patients similar to the new one, (d) incorporation of the 5 years Progression Free Probability and success rate in the decision making process and (e) hybridisation of CBR with a novel group based simulated annealing algorithm to update knowledge/experience gained in treating patients over time. The efficiency of the proposed system was validated using real data sets collected from the Nottingham University Hospitals. Experiments based on a leave-one-out strategy demonstrated that for most of the patients, the dose plans generated by our approach are coherent with the dose plans prescribed by an experienced oncologist or even better. This system may play a vital role to assist the oncologist in making a better decision in less time; it incorporates the success rate of previously treated similar patients in the dose planning for a new patient and it can also be used in teaching and training processes. In addition, the developed method is generic in nature and can be used to solve similar non-linear real world complex problems

    Trustworthy Deep Learning for Medical Image Segmentation

    Full text link
    Despite the recent success of deep learning methods at achieving new state-of-the-art accuracy for medical image segmentation, some major limitations are still restricting their deployment into clinics. One major limitation of deep learning-based segmentation methods is their lack of robustness to variability in the image acquisition protocol and in the imaged anatomy that were not represented or were underrepresented in the training dataset. This suggests adding new manually segmented images to the training dataset to better cover the image variability. However, in most cases, the manual segmentation of medical images requires highly skilled raters and is time-consuming, making this solution prohibitively expensive. Even when manually segmented images from different sources are available, they are rarely annotated for exactly the same regions of interest. This poses an additional challenge for current state-of-the-art deep learning segmentation methods that rely on supervised learning and therefore require all the regions of interest to be segmented for all the images to be used for training. This thesis introduces new mathematical and optimization methods to mitigate those limitations.Comment: PhD thesis successfully defended on 1st July 2022. Examiners: Prof Sotirios Tsaftaris and Dr Wenjia Ba

    Biomedical applications of belief networks

    Get PDF
    Biomedicine is an area in which computers have long been expected to play a significant role. Although many of the early claims have proved unrealistic, computers are gradually becoming accepted in the biomedical, clinical and research environment. Within these application areas, expert systems appear to have met with the most resistance, especially when applied to image interpretation.In order to improve the acceptance of computerised decision support systems it is necessary to provide the information needed to make rational judgements concerning the inferences the system has made. This entails an explanation of what inferences were made, how the inferences were made and how the results of the inference are to be interpreted. Furthermore there must be a consistent approach to the combining of information from low level computational processes through to high level expert analyses.nformation from low level computational processes through to high level expert analyses. Until recently ad hoc formalisms were seen as the only tractable approach to reasoning under uncertainty. A review of some of these formalisms suggests that they are less than ideal for the purposes of decision making. Belief networks provide a tractable way of utilising probability theory as an inference formalism by combining the theoretical consistency of probability for inference and decision making, with the ability to use the knowledge of domain experts.nowledge of domain experts. The potential of belief networks in biomedical applications has already been recog¬ nised and there has been substantial research into the use of belief networks for medical diagnosis and methods for handling large, interconnected networks. In this thesis the use of belief networks is extended to include detailed image model matching to show how, in principle, feature measurement can be undertaken in a fully probabilistic way. The belief networks employed are usually cyclic and have strong influences between adjacent nodes, so new techniques for probabilistic updating based on a model of the matching process have been developed.An object-orientated inference shell called FLAPNet has been implemented and used to apply the belief network formalism to two application domains. The first application is model-based matching in fetal ultrasound images. The imaging modality and biological variation in the subject make model matching a highly uncertain process. A dynamic, deformable model, similar to active contour models, is used. A belief network combines constraints derived from local evidence in the image, with global constraints derived from trained models, to control the iterative refinement of an initial model cue.In the second application a belief network is used for the incremental aggregation of evidence occurring during the classification of objects on a cervical smear slide as part of an automated pre-screening system. A belief network provides both an explicit domain model and a mechanism for the incremental aggregation of evidence, two attributes important in pre-screening systems.Overall it is argued that belief networks combine the necessary quantitative features required of a decision support system with desirable qualitative features that will lead to improved acceptability of expert systems in the biomedical domain

    Identification of potential biomarkers to differentially diagnose solid pseudopapillary tumors and pancreatic malignancies via a gene regulatory network

    Get PDF
    Additional file 1: In-degree distribution for GRN. X-axis represents the in-degree for a certain node. A node of in-degree x means that this node is regulated by a total number of x other nodes. Y-axis represents the total number of network nodes which has an in-degree of x. The red curve was the fitting to the power law distribution. (A): The in-degree distribution for sub-GRN in which only miRNAs are included as regulators and the in-degree for each node (miRNAs and protein coding genes) was calculated in this sub-GRN. The in-degree ranges from 0 to 27. (B): In-degree distribution for sub-GRN in which only TFs are included as regulators

    A novel combination of Cased-Based Reasoning and Multi Criteria Decision Making approach to radiotherapy dose planning

    Get PDF
    In this thesis, a set of novel approaches has been developed by integration of Cased-Based Reasoning (CBR) and Multi-Criteria Decision Making (MCDM) techniques. Its purpose is to design a support system to assist oncologists with decision making about the dose planning for radiotherapy treatment with a focus on radiotherapy for prostate cancer. CBR, an artificial intelligence approach, is a general paradigm to reasoning from past experiences. It retrieves previous cases similar to a new case and exploits the successful past solutions to provide a suggested solution for the new case. The case pool used in this research is a dataset consisting of features and details related to successfully treated patients in Nottingham University Hospital. In a typical run of prostate cancer radiotherapy simple CBR, a new case is selected and thereafter based on the features available at our data set the most similar case to the new case is obtained and its solution is prescribed to the new case. However, there are a number of deficiencies associated with this approach. Firstly, in a real-life scenario, the medical team considers multiple factors rather than just the similarity between two cases and not always the most similar case provides with the most appropriate solution. Thus, in this thesis, the cases with high similarity to a new case have been evaluated with the application of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). This approach takes into account multiple criteria besides similarity to prescribe a final solution. Moreover, the obtained dose plans were optimised through a Goal Programming mathematical model to improve the results. By incorporating oncologists’ experiences about violating the conventionally available dose limits a system was devised to manage the trade-off between treatment risk for sensitive organs and necessary actions to effectively eradicate cancer cells. Additionally, the success rate of the treatment, the 2-years cancer free possibility, has a vital role in the efficiency of the prescribed solutions. To consider the success rate, as well as uncertainty involved in human judgment about the values of different features of radiotherapy Data Envelopment Analysis (DEA) based on grey numbers, was used to assess the efficiency of different treatment plans on an input and output based approach. In order to deal with limitations involved in DEA regarding the number of inputs and outputs, we presented an approach for Factor Analysis based on Principal Components to utilize the grey numbers. Finally, to improve the CBR base of the system, we applied Grey Relational Analysis and Gaussian distant based CBR along with features weight selection through Genetic Algorithm to better handle the non-linearity exists within the problem features and the high number of features. Finally, the efficiency of each system has been validated through leave-one-out strategy and the real dataset. The results demonstrated the efficiency of the proposed approaches and capability of the system to assist the medical planning team. Furthermore, the integrated approaches developed within this thesis can be also applied to solve other real-life problems in various domains other than healthcare such as supply chain management, manufacturing, business success prediction and performance evaluation

    Optimising outcomes for potentially resectable pancreatic cancer through personalised predictive medicine : the application of complexity theory to probabilistic statistical modeling

    Get PDF
    Survival outcomes for pancreatic cancer remain poor. Surgical resection with adjuvant therapy is the only potentially curative treatment, but for many people surgery is of limited benefit. Neoadjuvant therapy has emerged as an alternative treatment pathway however the evidence base surrounding the treatment of potentially resectable pancreatic cancer is highly heterogeneous and fraught with uncertainty and controversy. This research seeks to engage with conjunctive theorising by avoiding simplification and abstraction to draw on different kinds of data from multiple sources to move research towards a theory that can build a rich picture of pancreatic cancer management pathways as a complex system. The overall aim is to move research towards personalised realistic medicine by using personalised predictive modeling to facilitate better decision making to achieve the optimisation of outcomes. This research is theory driven and empirically focused from a complexity perspective. Combining operational and healthcare research methodology, and drawing on influences from complementary paradigms of critical realism and systems theory, then enhancing their impact by using Cilliers’ complexity theory ‘lean ontology’, an open-world ontology is held and both epistemic reality and judgmental relativity are accepted. The use of imperfect data within statistical simulation models is explored to attempt to expand our capabilities for handling the emergent and uncertainty and to find other ways of relating to complexity within the field of pancreatic cancer research. Markov and discrete-event simulation modelling uncovered new insights and added a further dimension to the current debate by demonstrating that superior treatment pathway selection depended on individual patient and tumour factors. A Bayesian Belief Network was developed that modelled the dynamic nature of this complex system to make personalised prognostic predictions across competing treatments pathways throughout the patient journey to facilitate better shared clinical decision making with an accuracy exceeding existing predictive models.Survival outcomes for pancreatic cancer remain poor. Surgical resection with adjuvant therapy is the only potentially curative treatment, but for many people surgery is of limited benefit. Neoadjuvant therapy has emerged as an alternative treatment pathway however the evidence base surrounding the treatment of potentially resectable pancreatic cancer is highly heterogeneous and fraught with uncertainty and controversy. This research seeks to engage with conjunctive theorising by avoiding simplification and abstraction to draw on different kinds of data from multiple sources to move research towards a theory that can build a rich picture of pancreatic cancer management pathways as a complex system. The overall aim is to move research towards personalised realistic medicine by using personalised predictive modeling to facilitate better decision making to achieve the optimisation of outcomes. This research is theory driven and empirically focused from a complexity perspective. Combining operational and healthcare research methodology, and drawing on influences from complementary paradigms of critical realism and systems theory, then enhancing their impact by using Cilliers’ complexity theory ‘lean ontology’, an open-world ontology is held and both epistemic reality and judgmental relativity are accepted. The use of imperfect data within statistical simulation models is explored to attempt to expand our capabilities for handling the emergent and uncertainty and to find other ways of relating to complexity within the field of pancreatic cancer research. Markov and discrete-event simulation modelling uncovered new insights and added a further dimension to the current debate by demonstrating that superior treatment pathway selection depended on individual patient and tumour factors. A Bayesian Belief Network was developed that modelled the dynamic nature of this complex system to make personalised prognostic predictions across competing treatments pathways throughout the patient journey to facilitate better shared clinical decision making with an accuracy exceeding existing predictive models

    Fuzzy Cognitive Maps with Type 2 Fuzzy Sets

    Get PDF
    • …
    corecore