2,396 research outputs found

    Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks

    Full text link
    Synchronization of relay nodes is an important and critical issue in exploiting cooperative diversity in wireless networks. In this paper, two asynchronous cooperative diversity schemes are proposed, namely, distributed delay diversity and asynchronous space-time coded cooperative diversity schemes. In terms of the overall diversity-multiplexing (DM) tradeoff function, we show that the proposed independent coding based distributed delay diversity and asynchronous space-time coded cooperative diversity schemes achieve the same performance as the synchronous space-time coded approach which requires an accurate symbol-level timing synchronization to ensure signals arriving at the destination from different relay nodes are perfectly synchronized. This demonstrates diversity order is maintained even at the presence of asynchronism between relay node. Moreover, when all relay nodes succeed in decoding the source information, the asynchronous space-time coded approach is capable of achieving better DM-tradeoff than synchronous schemes and performs equivalently to transmitting information through a parallel fading channel as far as the DM-tradeoff is concerned. Our results suggest the benefits of fully exploiting the space-time degrees of freedom in multiple antenna systems by employing asynchronous space-time codes even in a frequency flat fading channel. In addition, it is shown asynchronous space-time coded systems are able to achieve higher mutual information than synchronous space-time coded systems for any finite signal-to-noise-ratio (SNR) when properly selected baseband waveforms are employed

    Outage analysis of superposition modulation aided network coded cooperation in the presence of network coding noise

    No full text
    We consider a network, where multiple sourcedestination pairs communicate with the aid of a half-duplex relay node (RN), which adopts decode-forward (DF) relaying and superposition-modulation (SPM) for combining the signals transmitted by the source nodes (SNs) and then forwards the composite signal to all the destination nodes (DNs). Each DN extracts the signals transmitted by its own SN from the composite signal by subtracting the signals overheard from the unwanted SNs. We derive tight lower-bounds for the outage probability for transmission over Rayleigh fading channels and invoke diversity combining at the DNs, which is validated by simulation for both the symmetric and the asymmetric network configurations. For the high signal-to-noise ratio regime, we derive both an upperbound as well as a lower-bound for the outage performance and analyse the achievable diversity gain. It is revealed that a diversity order of 2 is achieved, regardless of the number of SN-DN pairs in the network. We also highlight the fact that the outage performance is dominated by the quality of the worst overheated link, because it contributes most substantially to the network coding noise. Finally, we use the lower bound for designing a relay selection scheme for the proposed SPM based network coded cooperative communication (SPM-NC-CC) system.<br/
    corecore