645 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    A Survey of Self Organisation in Future Cellular Networks

    Full text link

    Power Allocation Strategies for Wireless Relay Networks with Analog Network Coding: Survey

    Get PDF
    Relay aided communication with network coding can bring spectacular performance enhancements for wireless networks. The proper design of power allocated to each of the nodes involved in the communication is essential as it has impact on the performance when Analog Network coding (ANC) is used. This paper presents a survey on recent power allocation strategies, intended objectives, practical constraints that have been considered, and corresponding performances for networks with ANC protocol

    Convex Optimisation for Communication Systems

    No full text
    In this thesis new robust methods for the efficient sharing of the radio spectrum for underlay cognitive radio (CR) systems are developed. These methods provide robustness against uncertainties in the channel state information (CSI) that is available to the cognitive radios. A stochastic approach is taken and the robust spectrum sharing methods are formulated as convex optimisation problems. Three efficient spectrum sharing methods; power control, cooperative beamforming and conventional beamforming are studied in detail. The CR power control problem is formulated as a sum rate maximisation problem and transformed into a convex optimisation problem. A robust power control method under the assumption of partial CSI is developed and also transformed into a convex optimisation problem. A novel method of detecting and removing infeasible constraints from the power allocation problem is presented that results in considerably improved performance. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations. The concept of cooperative beamforming for spectrum sharing is applied to an underlay CR relay network. Distributed single antenna relay nodes are utilised to form a virtual antenna array that provides increased gains in capacity through cooperative beamforming. It is shown that the cooperative beamforming problems can be transformed into convex optimisation problems. New robust cooperative beamformers under the assumption of partial and imperfect CSI are developed and also transformed into convex optimisation problems. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations. Conventional beamforming to allow efficient spectrum sharing in an underlay CR system is studied. The beamforming problems are formulated and transformed into convex optimisation problems. New robust beamformers under the assumption of partial and imperfect CSI are developed and also transformed into convex optimisation problems. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations

    Wireless Powered Cognitive Radio Networks With Compressive Sensing and Matrix Completion

    Get PDF
    In this paper, we consider cognitive radio networks in which energy constrained secondary users (SUs) can harvest energy from the randomly deployed power beacons. A new frame structure is proposed for the considered networks. In the considered network, a wireless power transfer model is proposed, and the closed-form expressions for the power outage probability are derived. In addition, in order to reduce the energy consumption at SUs, sub-Nyquist sampling are performed at SUs. Subsequently, compressive sensing and matrix completion techniques are invoked to recover the original signals at the fusion center by utilizing the sparsity property of spectral signals. Throughput optimizations of the secondary networks are formulated into two linear constrained problems, which aim to maximize the throughput of a single SU and the whole cooperative network, respectively. Three methods are provided to obtain the maximal throughput of secondary networks by optimizing the time slots allocation and the transmit power. Simulation results show that the maximum throughput can be improved by implementing compressive spectrum sensing in the proposed frame structure design
    corecore