2,480 research outputs found

    MIMO-OFDM Optimal Decoding and Achievable Information Rates Under Imperfect Channel Estimation

    Full text link
    Optimal decoding of bit interleaved coded modulation (BICM) MIMO-OFDM where an imperfect channel estimate is available at the receiver is investigated. First, by using a Bayesian approach involving the channel a posteriori density, we derive a practical decoding metric for general memoryless channels that is robust to the presence of channel estimation errors. Then, we evaluate the outage rates achieved by a decoder that uses our proposed metric. The performance of the proposed decoder is compared to the classical mismatched decoder and a theoretical decoder defined as the best decoder in the presence of imperfect channel estimation. Numerical results over Rayleigh block fading MIMO-OFDM channels show that the proposed decoder outperforms mismatched decoding in terms of bit error rate and outage capacity without introducing any additional complexity

    Low-power Secret-key Agreement over OFDM

    Get PDF
    Information-theoretic secret-key agreement is perhaps the most practically feasible mechanism that provides unconditional security at the physical layer to date. In this paper, we consider the problem of secret-key agreement by sharing randomness at low power over an orthogonal frequency division multiplexing (OFDM) link, in the presence of an eavesdropper. The low power assumption greatly simplifies the design of the randomness sharing scheme, even in a fading channel scenario. We assess the performance of the proposed system in terms of secrecy key rate and show that a practical approach to key sharing is obtained by using low-density parity check (LDPC) codes for information reconciliation. Numerical results confirm the merits of the proposed approach as a feasible and practical solution. Moreover, the outage formulation allows to implement secret-key agreement even when only statistical knowledge of the eavesdropper channel is available.Comment: 9 pages, 4 figures; this is the authors prepared version of the paper with the same name accepted for HotWiSec 2013, the Second ACM Workshop on Hot Topics on Wireless Network Security and Privacy, Budapest, Hungary 17-19 April 201

    Adaptive OFDM Index Modulation for Two-Hop Relay-Assisted Networks

    Full text link
    In this paper, we propose an adaptive orthogonal frequency-division multiplexing (OFDM) index modulation (IM) scheme for two-hop relay networks. In contrast to the traditional OFDM IM scheme with a deterministic and fixed mapping scheme, in this proposed adaptive OFDM IM scheme, the mapping schemes between a bit stream and indices of active subcarriers for the first and second hops are adaptively selected by a certain criterion. As a result, the active subcarriers for the same bit stream in the first and second hops can be varied in order to combat slow frequency-selective fading. In this way, the system reliability can be enhanced. Additionally, considering the fact that a relay device is normally a simple node, which may not always be able to perform mapping scheme selection due to limited processing capability, we also propose an alternative adaptive methodology in which the mapping scheme selection is only performed at the source and the relay will simply utilize the selected mapping scheme without changing it. The analyses of average outage probability, network capacity and symbol error rate (SER) are given in closed form for decode-and-forward (DF) relaying networks and are substantiated by numerical results generated by Monte Carlo simulations.Comment: 30 page

    Multicarrier systems with antenna diversity for wireless commmunications

    Get PDF
    Future wireless communications systems need a high quality of service coupled with high data rate transmission for multimedia services. Achieving this goal in the hostile wireless environment with its limited spectrum has several challenges and implies the necessity of a communication system that is able to increase the channel capacity and overcome the difficulties of the wireless transmission environment with reasonable system complexity. Two of the most enabling technologies for the next generation of wireless systems are orthogonal frequency division multiplexing (OFDM) and multiple-input multiple output (MIMO) systems. MIMO systems have been originally designed for known flat fading channels. In this research, some novel MIMO-OFDM schemes for broadband wireless applications are developed and presented. The objective of the proposed schemes is to enhance the performance of OFDM systems over multipath fading channels by using antenna diversity techniques, and also to make MIMO systems applicable to frequency selective multipath fading channels. For the performance evaluation, both bit error rate (BER) and channel capacity analysis are considered. The channel capacity of MIMO-OFDM systems is analytically evaluated and it is shown that the channel capacity of the these systems can be dramatically increased as a function of the number of antennas. The BER performance of the MIMO-OFDM systems is analytically evaluated. New closed-form expressions for the BER performance of the MIMO-OFDM systems over frequency selective fading channels are derived. On the other hand, the growing popularity of both MIMO and OFDM systems creates the need for adaptive modulation to integrate temporal, spatial and spectral components together. The performance improvement offered by adaptive modulation over non-adaptive systems is remarkable. Furthermore, other dimensions such as frequency and space may yield further gains by providing additional degrees of freedom that can be exploited by adaptive modulation. In this research, a new adaptive modulation scheme for our MIMO-OFDM system (SFBC-OFDM) is presented. The proposed scheme exploits the benefits of space-frequency block codes (SFBC), OFDM and adaptive modulation to provide a high quality of transmission for wireless communications over frequency selective fading channels. It is shown that adaptive modulation can greatly improve the performance of the conventional SFBC-OFDM systems. Finally, a novel antenna selection algorithm is proposed for our MIMO-OFDM system. Three different forms of antenna selection are considered: transmit antenna selection, receive antenna selection, and joint transmit/receive antenna selection. The coding and diversity advantages of the MIMO-OFDM system with antenna selection are examined using average SNR gain, outage probability and BER analysis. The system performance of different forms of the proposed scheme is evaluated and compared. It is shown that the proposed scheme can greatly improve the performance of the conventional SFBC-OFDM systems

    Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability

    Get PDF
    This document is the Accepted Manuscript version of the following article: Dian-Wu Yue, and Yichuang Sun, ‘Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability’, Wireless Personal Communications, Vol. 90 (4): 1951-1970, first available online on 20 June 2016. Under embargo. Embargo end date: 20 June 2017. The final publication is available at Springer via https://link.springer.com/article/10.1007%2Fs11277-016-3432-4This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.Peer reviewe
    • …
    corecore