1,248 research outputs found

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Joint Relay Selection and Power Allocation in Large-Scale MIMO Systems with Untrusted Relays and Passive Eavesdroppers

    Full text link
    In this paper, a joint relay selection and power allocation (JRP) scheme is proposed to enhance the physical layer security of a cooperative network, where a multiple antennas source communicates with a single-antenna destination in presence of untrusted relays and passive eavesdroppers (Eves). The objective is to protect the data confidentially while concurrently relying on the untrusted relays as potential Eves to improve both the security and reliability of the network. To realize this objective, we consider cooperative jamming performed by the destination while JRP scheme is implemented. With the aim of maximizing the instantaneous secrecy rate, we derive a new closed-form solution for the optimal power allocation and propose a simple relay selection criterion under two scenarios of non-colluding Eves (NCE) and colluding Eves (CE). For the proposed scheme, a new closed-form expression is derived for the ergodic secrecy rate (ESR) and the secrecy outage probability as security metrics, and a new closed-form expression is presented for the average symbol error rate (SER) as a reliability measure over Rayleigh fading channels. We further explicitly characterize the high signal-to-noise ratio slope and power offset of the ESR to highlight the impacts of system parameters on the ESR. In addition, we examine the diversity order of the proposed scheme to reveal the achievable secrecy performance advantage. Finally, the secrecy and reliability diversity-multiplexing tradeoff of the optimized network are provided. Numerical results highlight that the ESR performance of the proposed JRP scheme for NCE and CE cases is increased with respect to the number of untrustworthy relays.Comment: 18 pages, 10 figures, IEEE Transactions on Information Forensics and Security (In press
    • …
    corecore