134 research outputs found

    On the Performance of Multiple Antenna Cooperative Spectrum Sharing Protocol under Nakagami-m Fading

    Full text link
    In a cooperative spectrum sharing (CSS) protocol, two wireless systems operate over the same frequency band albeit with different priorities. The secondary (or cognitive) system which has a lower priority, helps the higher priority primary system to achieve its target rate by acting as a relay and allocating a fraction of its power to forward the primary signal. The secondary system in return is benefited by transmitting its own data on primary system's spectrum. In this paper, we have analyzed the performance of multiple antenna cooperative spectrum sharing protocol under Nakagami-m Fading. Closed form expressions for outage probability have been obtained by varying the parameters m and Omega of the Nakagami-m fading channels. Apart from above, we have shown the impact of power allocation factor (alpha) and parameter m on the region of secondary spectrum access, conventionally defined as critical radius for the secondary system. A comparison between theoretical and simulated results is also presented to corroborate the theoretical results obtained in this paperComment: Accepted in the proceedings of IEEE PIMRC 2015 Hong Kong, Chin

    Underlay Cognitive Multihop MIMO Networks With and Without Receive Interference Cancellation

    Get PDF

    Joint Spatial and Spectrum Cooperation in Wireless Network.

    Get PDF
    PhDThe sky-rocketing growth of multimedia infotainment applications and broadband-hungry mobile devices exacerbate the stringent demand for ultra high data rate and more spectrum resources. Along with it, the unbalanced temporal and geographical variations of spectrum usage further inspires those spectral-efficient networks, namely, cognitive radio and heterogeneous cellular networks (HCNs). This thesis focuses on the system design and performance enhancement of cognitive radio (CR) and HCNs. Three different aspects of performance improvement are considered, including link reliability of cognitive radio networks (CNs), security enhancement of CNs, and energy efficiency improvement of CNs and HCNs. First, generalized selection combining (GSC) is proposed as an effective receiver design for interference reduction and reliability improvement of CNs with outdated CSI. A uni- ed way for deriving the distribution of received signal-to-noise ratio (SNR) is developed in underlay spectrum sharing networks subject to interference from the primary trans- mitter (PU-Tx) to the secondary receiver (SU-Rx), maximum transmit power constraint at the secondary transmitter (SU-Tx), and peak interference power constraint at the PU receiver (PU-Rx), is developed. Second, transmit antenna selection with receive generalized selection combining (TAS/GSC) in multi-antenna relay-aided communica- tion is introduced in CNs under Rayleigh fading and Nakagami-m fading. Based on newly derived complex statistical properties of channel power gain of TAS/GSC, exact ergodic capacity and high SNR ergodic capacity are derived over Nakagami-m fading. Third, beamforming and arti cial noise generation (BF&AN) is introduced as a robust scheme to enhance the secure transmission of large-scale spectrum sharing networks with multiple randomly located eavesdroppers (Eves) modeled as homogeneous Poisson Point Process (PPP). Stochastic geometry is applied to model and analyze the impact of i BF&AN on this complex network. Optimal power allocation factor for BF&AN which maximizes the average secrecy rate is further studied under the outage probability con- straint of primary network. Fourth, a new wireless energy harvesting protocol is proposed for underlay cognitive relay networks with the energy-constrained SU-Txs. Exact and asymptotic outage probability, delay-sensitive throughput, and delay-tolerant through- put are derived to explore the tradeoff between the energy harvested from the PU-Txs and the interference caused by the PU-Txs. Fifth, a harvest-then-transmit protocol is proposed in K-tier HCNs with randomly located multiple-antenna base stations (BSs) and single antenna mobile terminals (MTs) modeled as homogeneous PPP. The average received power at MT, the uplink (UL) outage probability, and the UL average ergodic rate are derived to demonstrate the intrinsic relationship between the energy harvested from BSs in the downlink (DL) and the MT performance in the UL. Throughout the thesis, it is shown that link reliability, secrecy performance, and energy efficiency of CNs and HCNs can be signi cantly leveraged by taking advantage of multiple antennas, relays, and wireless energy harvesting
    • …
    corecore