963 research outputs found

    Full-duplex small cells for next generation heterogeneous cellular networks: a case study of outage and rate coverage analysis.

    Get PDF
    Full-duplex (FD) technology is currently under consideration for adoption in a range of legacy communications standards due to its attractive features. On the other hand, cellular networks are becoming increasingly heterogeneous as operators deploy a mix of macrocells and small cells. With growing tendency toward network densification, small cells are expected to play a key role in realizing the envisioned capacity objectives of emerging 5G cellular networks. From a practical perspective, small cells provide an ideal platform for deploying FD technology in cellular networks due to its lower transmit power and lower cost for implementation compared with the macrocell counterpart. Motivated by these developments, in this paper, we analyze a two-Tier heterogeneous cellular network, wherein the first tier comprises half-duplex macrobase stations and the second tier consists of the FD small cells. Through a stochastic geometry approach, we characterize and derive the closed-form expressions for the outage probability and the rate coverage. Our analysis explicitly accounts for the spatial density, the self-interference cancellation capabilities, and the interference coordination based on enhanced inter-cell interference coordination techniques. Performance evaluation investigates the impact of different parameters on the outage probability and the rate coverage in various scenarios

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    On the Outage Probability of the Full-Duplex Interference-Limited Relay Channel

    Get PDF
    In this paper, we study the performance, in terms of the asymptotic error probability, of a user which communicates with a destination with the aid of a full-duplex in-band relay. We consider that the network is interference-limited, and interfering users are distributed as a Poisson point process. In this case, the asymptotic error probability is upper bounded by the outage probability (OP). We investigate the outage behavior for well-known cooperative schemes, namely, decode-and-forward (DF) and compress-and-forward (CF) considering fading and path loss. For DF we determine the exact OP and develop upper bounds which are tight in typical operating conditions. Also, we find the correlation coefficient between source and relay signals which minimizes the OP when the density of interferers is small. For CF, the achievable rates are determined by the spatial correlation of the interferences, and a straightforward analysis isn't possible. To handle this issue, we show the rate with correlated noises is at most one bit worse than with uncorrelated noises, and thus find an upper bound on the performance of CF. These results are useful to evaluate the performance and to optimize relaying schemes in the context of full-duplex wireless networks.Comment: 30 pages, 4 figures. Final version. To appear in IEEE JSAC Special Issue on Full-duplex Wireless Communications and Networks, 201
    corecore