69 research outputs found

    Outage Probability of Dual-Hop Selective AF With Randomly Distributed and Fixed Interferers

    Full text link
    The outage probability performance of a dual-hop amplify-and-forward selective relaying system with global relay selection is analyzed for Nakagami-mm fading channels in the presence of multiple interferers at both the relays and the destination. Two different cases are considered. In the first case, the interferers are assumed to have random number and locations. Outage probability using the generalized Gamma approximation (GGA) in the form of one-dimensional integral is derived. In the second case, the interferers are assumed to have fixed number and locations. Exact outage probability in the form of one-dimensional integral is derived. For both cases, closed-form expressions of lower bounds and asymptotic expressions for high signal-to-interference-plus-noise ratio are also provided. Simplified closed-form expressions of outage probability for special cases (e.g., dominant interferences, i.i.d. interferers, Rayleigh distributed signals) are studied. Numerical results are presented to show the accuracy of our analysis by examining the effects of the number and locations of interferers on the outage performances of both AF systems with random and fixed interferers.Comment: 35 pages, 11 figures, accepted with minor revisions for publication as a regular paper in the IEEE Transactions on Vehicular Technology on 21/09/201

    MIMO Relay Networks: Scheduling and Outage Probability

    Get PDF
    We present an analytical characterization of the ergodic capacity for an amplify-and-forward (AF) multiple-input multiple-output (MIMO) relay network over asymmetric chan- nels. In the two-hop system that we consider, the source-relay and relay-destination channels undergo Rayleigh and Rician fading, respectively. Considering arbitrary-rank means for the relay- destination channel, we first investigate the marginal distribution of an unordered eigenvalue of the cascaded AF channel, and we provide an analytical expression for the ergodic capacity of the system. The closed-form expressions that we derive are computationally efficient and validated by numerical simulation. Our results also show the impact of the signal-to-noise ratio and of the Rician factor on this asymmetric relay network

    Performance analysis of diversity techniques in wireless communication systems: Cooperative systems with CCI and MIMO-OFDM systems

    Get PDF
    This Dissertation analyzes the performance of ecient digital commu- nication systems, the performance analysis includes the bit error rate (BER) of dier- ent binary and M-ary modulation schemes, and the average channel capacity (ACC) under dierent adaptive transmission protocols, namely, the simultaneous power and rate adaptation protocol (OPRA), the optimal rate with xed power protocol (ORA), the channel inversion with xed rate protocol (CIFR), and the truncated channel in- version with xed transmit power protocol (CTIFR). In this dissertation, BER and ACC performance of interference-limited dual-hop decode-and-forward (DF) relay- ing cooperative systems with co-channel interference (CCI) at both the relay and destination nodes is analyzed in small-scale multipath Nakagami-m fading channels with arbitrary (integer as well as non-integer) values of m. This channel condition is assumed for both the desired signal as well as co-channel interfering signals. In addition, the practical case of unequal average fading powers between the two hops is assumed in the analysis. The analysis assumes an arbitrary number of indepen- dent and non-identically distributed (i.n.i.d.) interfering signals at both relay (R) and destination (D) nodes. Also, the work extended to the case when the receiver employs the maximum ratio combining (MRC) and the equal gain combining (EGC) schemes to exploit the diversity gain

    Performance analysis for cooperative wireless communications

    Get PDF
    Cooperative relaying has been proposed as a promising solution to mitigate and combat the deleterious effects of fading by sending and receiving independent copies of the same signal at different nodes. It has attracted huge attention from both industry and academia. The purpose of this thesis is to provide an analytical performance evaluation of the cooperative wireless systems while taking some realistic conditions into consideration. To achieve this, first, performance analysis of amplify-and-forward (AF) relaying using pilot-aided maximum likelihood estimation is studied in this thesis. Both disintegrated channel estimation (DCE) and cascaded channel estimation (CCE) are considered. Based on this analysis, optimal energy allocation is proposed. Then, performance analysis for AF relaying corrupted by interferers are investigated. Both randomly distributed and fixed interferers are considered. For random interferers, both the number and the locations of the interferers are random while for fixed interferers, both the number and the locations are fixed. Next, multihop relaying and multiple scattering channels over α - μ fading are analyzed. Channels with interferences and without interferences are considered. Exact results in the form of one-dimensional integral are derived. Also, approximate results with simplified structure and closed-form expressions are provided. Finally, a new hard decision fusion rule that combines arbitrary numbers of bits for different samples taken at different nodes is proposed. The best thresholds for the fusion rules using 2 bits, 3 bits and 4 bits are obtained through simulation. The bit error rate (BER) for hard fusion rule with 1 bit is provided. Numerical results are presented to show the accuracy of our analysis and provide insights. First, they show that our optimal energy allocation methods outperform the conventional system without optimal energy allocation, which could be as large as several dB’s in some cases. Second, with the increase of signal-to-interference-plus-noise ratio (SINR) for AF relaying with interference, the outage probability decreases accordingly for both random and fixed interferers. However, with the change of interference-to-noise ratio (INR) but with the SINR fixed, the outage probability for random interferers change correspondingly while the outage probability for fixed interferers remains almost the same. Third, our newly derived approximate expressions are shown to have acceptable performances in approximating outage probability in wireless multihop relaying system and multiple scattering channel considering interferences and without interferences. Last, our new hard decision fusion rule is shown to achieve better performance with higher energy efficiency. Also they show that there is a tradeoff between performance and energy penalty in the hard decision fusion rule

    Outage Performance of Two-Hop OFDM Systems with Spatially Random Decode-and-Forward Relays

    Full text link
    In this paper, we analyze the outage performance of different multicarrier relay selection schemes for two-hop orthogonal frequency-division multiplexing (OFDM) systems in a Poisson field of relays. In particular, special emphasis is placed on decode-and-forward (DF) relay systems, equipped with bulk and per-subcarrier selection schemes, respectively. The exact expressions for outage probability are derived in integrals for general cases. In addition, asymptotic expressions for outage probability in the high signal-to-noise ratio (SNR) region in the finite circle relay distribution region are determined in closed forms for both relay selection schemes. Also, the outage probabilities for free space in the infinite relay distribution region are derived in closed forms. Meanwhile, a series of important properties related to cooperative systems in random networks are investigated, including diversity, outage probability ratio of two selection schemes and optimization of the number of subcarriers in terms of system throughput. All analysis is numerically verified by simulations. Finally, a framework for analyzing the outage performance of OFDM systems with spatially random relays is constructed, which can be easily modified to analyze other similar cases with different forwarding protocols, location distributions and/or channel conditions

    Study of relay selection in a multi-cell cognitive network

    Get PDF
    This paper studies best relay selection in a multi-cell cognitive network with amplify-and-forward (AF) relays. We derive the analytical integral-form expression of the cumulative distribution function (CDF) for the received signal-to-noise-plus-interference-ratio (SINR) at the destination node, based on which the closed-form of the outage probability is obtained. Analysis shows that the proposed relay selection scheme achieves the best SINR at the destination node with interference to the primary user being limited by a pre-defined level. Simulation results are also presented to verify the analysis. The proposed relay selection approach is an attractive way to obtain diversity gain in a multi-cell cognitive network

    Channelization, Link Adaptation and Multi-antenna Techniques for OFDM(A) Based Wireless Systems

    Get PDF

    Adaptive relay techniques for OFDM-based cooperative communication systems

    Get PDF
    Cooperative communication has been considered as a cost-effective manner to exploit the spatial diversity, improve the quality-of-service and extend transmission coverage. However, there are many challenges faced by cooperative systems which use relays to forward signals to the destination, such as the accumulation of multipath channels, complex resource allocation with the bidirectional asymmetric traffic and reduction of transmission efficiency caused by additional relay overhead. In this thesis, we aim to address the above challenges of cooperative communications, and design the efficient relay systems. Starting with the channel accumulation problem in the amplify-and-forward relay system, we proposed two adaptive schemes for single/multiple-relay networks respectively. These schemes exploit an adaptive guard interval (GI) technique to cover the accumulated delay spread and enhance the transmission efficiency by limiting the overhead. The proposed GI scheme can be implemented without any extra control signal. Extending the adaptive GI scheme to multiple-relay systems, we propose a relay selection strategy which achieves the trade-off between the transmission reliability and overhead by considering both the channel gain and the accumulated delay spread. We then consider resource allocation problem in the two-way decode-and-forward relay system with asymmetric traffic loads. Two allocation algorithms are respectively investigated for time-division and frequency-division relay systems to maximize the end-to-end capacity of the two-way system under a capacity ratio constraint. For the frequency-division systems, a balanced end-to-end capacity is defined as the objective function which combines the requirements of maximizing the end-to-end capacity and achieving the capacity ratio. A suboptimal algorithm is proposed for the frequency-division systems which separates subcarrier allocation and time/power allocation. It can achieve the similar performance with the optimal one with reduced complexity. In order to further enhance the transmission reliability and maintaining low processing delay, we propose an equalize-and-forward (EF) relay scheme. The EF relay equalizes the channel between source and relay to eliminate the channel accumulation without signal regeneration. To reduce the processing time, an efficient parallel structure is applied in the EF relay. Numerical results show that the EF relay exhibits low outage probability at the same data rate as compared to AF and DF schemes
    • …
    corecore