1,957 research outputs found

    Outage performance of cognitive relay networks with wireless information and power transfer

    Get PDF
    In this paper, we consider underlay cognitive radio (CR) networks with one primary receiver, one cognitive transmitter-receiver pair, and one energy harvesting relay. The transmission power of the secondary source is opportunistically determined by its interference to the primary receiver, and the relay transmission is powered by the energy harvested from the radio-frequency observations at the relay. For the considered CR networks with simultaneous wireless information and power transfer (SWIPT), we derive analytical expressions for the outage probability, as well as their high signal-to-noise ratio (SNR) approximations in closed form. The developed analytical results demonstrate that the use of SWIPT will not cause any loss in diversity gain, but the outage probability achieved by the SWIPT-CR scheme asymptotically decays as log SNR/SNR, whereas a decaying rate of 1/SNR is achieved by a conventional CR network. Computer simulation results are also provided to demonstrate the accuracy of the presented analysis

    マルチホップ無線ネットワークの特性解析に関する研究

    Get PDF
    九州工業大学博士学位論文 学位記番号:情工博甲第309号 学位授与年月日:平成28年3月25日1 Introduction||2 Impact of Transceiver Hardware Impairments on Cognitive Network||3 Case study: Two-Way Cognitive Relay in RF Energy HarvestingWireless Sensor Network||4 Soft Information Relaying Protocol||5 Overall Conclusion and FutureWorkWireless communication has been considered as the most efficient mean of data transmission. We have been witnessed the breakthrough of wireless communication era in many manifolds, such as speech, coverage area, and stability. However, frequency bands, the resource to convey information wirelessly, are limited and expensive to be granted usage licenses. Attaining the goals of ubiquitous wireless devices will require the future wireless networks stepping forward to overcome the scarcity and expensiveness of wireless frequency bands. Thus, the future wireless networks should evolve to utilize wireless frequencies more efficiently, such as cognitive relay network where non-license users are able to transmit data in the same frequency band that officially allocated to primary users. Subsequently, the transmit power of users in a cognitive network is limited and the performance is vulnerable to impairments of transceiver hardware. This dissertation aims to analyze the performance of the cognitive relay network under the impact of transceiver hardware impairments. A case study of two-way cognitive relay network is given for further investigate the impact of transceiver hardware impairments on end-to-end outage performance and throughput. Furthermore, we provide a new relaying scheme in order to lessen the impact of transceiver hardware impairment and further boost the system performance. For the purposes, this dissertation is organized into five (5) chapters. Chapter 1: Introduction. In this chapter, multihop wireless networks and the performance metrics are overviewed. In particular, the relay networks and cognitive relay networks are presented. Moreover, the general model of the practical transceiver hardware impairment is detailed for further analysis. Chapter 2: The impact of transceiver hardware impairments on cognitive relay networks. By using the general hardware impairment model for the received signal, the closed forms of outage probability of the relay network with decode-and-forward (DF) and amplify-and-forward (AF) under the impact of transceiver hardware imperfection are derived. Based on these results, we provide further discussion on transceiver hardware selection guideline. Chapter 3: Case study: two-way cognitive relaying in energy harvesting wireless sensor networks. A two-way relay wireless sensor network equipped with RF energy harvesting node is introduced. This network is aimed to be implemented in hazardous or remote areas where power supply for the relay node is difficult to maintain. In this chapter, we consider four configurations of the network with formed by combining two bidirectional relaying protocols and two wireless power transfer policies. The detailed performance analysis of outage probability and throughput of the case-study network with four configurations are presented. Based on the analysis, we provide performance comparison between the four and suggest the network configuration with the best performance. Chapter 4: Soft information relaying protocol. The soft information relaying protocol is proposed and analyzed. The analysis shows that this relaying protocol can gradually reduce the impact of transceiver hardware impairment on cognitive relay networks. Hence, soft relaying protocol is considered as a solution for cognitive relay network with cost-effective wireless transceiver devices. Chapter 5: Overall conclusion. An overall summary of the works presented in the above is provided in this chapter. Moreover, the future related work is also discussed. The results in this dissertation acknowledge the impact of transceiver hardware impairment by presenting the reduction of outage probability and throughput of the cognitive relay network. It puts forward the consideration of including the impact of transceiver hardware impairments on wireless network performance analysis, especially for the cognitive networks of which the transmit power is limited. Furthermore, a new relaying protocol, namely soft information relaying protocol, is proposed as a solution to lessen the impact of transceiver hardware impairment. The analysis shows that the impact of transceiver hardware impairment in cognitive relay network is reduced in compared to conventional relaying schemes. As a final point, we have provided a full picture of performance analysis for the cognitive relay network under the impact of transceiver hardware imperfection and the solution to reduce the performance loss by applying soft information relaying scheme. This research would contribute to boost the development of cognitive relay networks where frequency bands are used more efficiently

    Performance enhancement solutions in wireless communication networks

    Get PDF
    In this dissertation thesis, we study the new relaying protocols for different wireless network systems. We analyze and evaluate an efficiency of the transmission in terms of the outage probability over Rayleigh fading channels by mathematical analyses. The theoretical analyses are verified by performing Monte Carlo simulations. First, we study the cooperative relaying in the Two-Way Decode-and-Forward (DF) and multi-relay DF scheme for a secondary system to obtain spectrum access along with a primary system. In particular, we proposed the Two-Way DF scheme with Energy Harvesting, and the Two-Way DF Non-orthogonal Multiple Access (NOMA) scheme with digital network coding. Besides, we also investigate the wireless systems with multi-relay; the best relay selection is presented to optimize the effect of the proposed scheme. The transmission protocols of the proposed schemes EHAF (Energy Harvesting Amplify and Forward) and EHDF (Energy Harvesting Decode and Forward) are compared together in the same environment and in term of outage probability. Hence, with the obtained results, we conclude that the proposed schemes improve the performance of the wireless cooperative relaying systems, particularly their throughput. Second, we focus on investigating the NOMA technology and proposing the optimal solutions (protocols) to advance the data rate and to ensure the Quality of Service (QoS) for the users in the next generation of wireless communications. In this thesis, we propose a Two-Way DF NOMA scheme (called a TWNOMA protocol) in which an intermediate relay helps two source nodes to communicate with each other. Simulation and analysis results show that the proposed protocol TWNOMA is improving the data rate when comparing with a conventional Two-Way scheme using digital network coding (DNC) (called a TWDNC protocol), Two-Way scheme without using DNC (called a TWNDNC protocol) and Two-Way scheme in amplify-and-forward(AF) relay systems (called a TWANC protocol). Finally, we considered the combination of the NOMA and physical layer security (PLS) in the Underlay Cooperative Cognitive Network (UCCN). The best relay selection strategy is investigated, which uses the NOMA and considers the PLS to enhance the transmission efficiency and secrecy of the new generation wireless networks.V této dizertační práci je provedena studie nových přenosových protokolů pro různé bezdrátové síťové systémy. S využitím matematické analýzy jsme analyzovali a vyhodnotili efektivitu přenosu z hlediska pravděpodobnosti výpadku přes Rayleighův kanál. Teoretické analýzy jsou ověřeny provedenými simulacemi metodou Monte Carlo. Nejprve došlo ke studii kooperativního přenosu ve dvoucestném dekóduj-a-předej (Two-Way Decode-and-Forward–TWDF) a vícecestném DF schématu s větším počtem přenosových uzlů pro sekundární systém, kdy takto byl získán přístup ke spektru spolu s primárním systémem. Konkrétně jsme navrhli dvoucestné DF schéma se získáváním energie a dvoucestné DF neortogonální schéma s mnohonásobným přístupem (Non-orthogonal Multiple Access–NOMA) s digitálním síťovým kódováním. Kromě toho rovněž zkoumáme bezdrátové systémy s větším počtem přenosových uzlů, kde je přítomen výběr nejlepšího přenosového uzlu pro optimalizaci efektivnosti navrženého schématu. Přenosové protokoly navržených schémat EHAF (Energy Harvesting Amplify and Forward) a EHDF(Energy Harvesting Decode and Forward) jsou společně porovnány v identickém prostředí z pohledu pravděpodobnosti výpadku. Následně, na základě získaných výsledků, jsme dospěli k závěru, že navržená schémata vylepšují výkonnost bezdrátových kooperativních systémů, konkrétně jejich propustnost. Dále jsme se zaměřili na zkoumání NOMA technologie a navrhli optimální řešení (protokoly) pro urychlení datového přenosu a zajištění QoS v další generaci bezdrátových komunikací. V této práci jsme navrhli dvoucestné DF NOMA schéma (nazýváno jako TWNOMA protokol), ve kterém mezilehlý přenosový uzel napomáhá dvěma zdrojovým uzlům komunikovat mezi sebou. Výsledky simulace a analýzy ukazují, že navržený protokol TWNOMA vylepšuje dosaženou přenosovou rychlost v porovnání s konvenčním dvoucestným schématem používajícím DNC (TWDNC protokol), dvoucestným schématem bez použití DNC (TWNDNC protokol) a dvoucestným schématem v zesil-a-předej (amplify-and-forward) přenosových systémech (TWANC protokol). Nakonec jsme zvážili využití kombinace NOMA a zabezpečení fyzické vrstvy (Physical Layer Security–PLS) v podpůrné kooperativní kognitivní síti (Underlay Cooperative Cognitive Network–UCCN). Zde je zde zkoumán výběr nejlepšího přenosového uzlu, který užívá NOMA a bere v úvahu PLS pro efektivnější přenos a zabezpečení nové generace bezdrátových sítí.440 - Katedra telekomunikační technikyvyhově

    Improving performance of far users in cognitive radio: Exploiting NOMA and wireless power transfer

    Get PDF
    In this paper, we examine non-orthogonal multiple access (NOMA) and relay selection strategy to benefit extra advantage from traditional cognitive radio (CR) relaying systems. The most important requirement to prolong lifetime of such network is employing energy harvesting in the relay to address network with limited power constraint. In particular, we study such energy harvesting CR-NOMA using amplify-and-forward (AF) scheme to improve performance far NOMA users. To further address such problem, two schemes are investigated in term of number of selected relays. To further examine system performance, the outage performance needs to be studied for such wireless powered CR-NOMA network over Rayleigh channels. The accurate expressions for the outage probability are derived to perform outage comparison of primary network and secondary network. The analytical results show clearly that position of these nodes, transmit signal to noise ratio (SNR) and power allocation coefficients result in varying outage performance. As main observation, performance gap between primary and secondary destination is decided by both power allocation factors and selection mode of single relay or multiple relays. Numerical studies were conducted to verify our derivations.Web of Science1211art. no. 220

    Power Switching Protocol for Two-way Relaying Network under Hardware Impairments

    Get PDF
    In this paper, we analyze the impact of hardware impairments at relay node and source node (i.e. imperfect nodes) on network performance by evaluating outage probability based on the effective signal to noise and distortion ratio (SNDR). Especially, we propose energy harvesting protocol at the relay and source nodes, namely, power switching imperfect relay (PSIR) and power switching imperfect source (PSIS). Aiming to determine the performance of energy constrained network, we first derive closed-form expressions of the outage probability and then the throughput can be maximized in delay-limited transmission mode. The simulation results provide practical insights into the impacts of hardware impairments and power switching factors of the energy harvesting protocol on the performance of energy harvesting enabled two-way relaying network

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Interference-Assisted Wireless Energy Harvesting in Cognitive Relay Network with Multiple Primary Transceivers

    Full text link
    We consider a spectrum sharing scenario, where a secondary network coexists with a primary network of multiple transceivers. The secondary network consists of an energy-constrained decode-and-forward secondary relay which assists the communication between a secondary transmitter and a destination in the presence of the interference from multiple primary transmitters. The secondary relay harvests energy from the received radio-frequency signals, which include the information signal from the secondary transmitter and the primary interference. The harvested energy is then used to decode the secondary information and forward it to the secondary destination. At the relay, we adopt a time switching policy due to its simplicity that switches between the energy harvesting and information decoding over time. Specifically, we derive a closed-form expression for the secondary outage probability under the primary outage constraint and the peak power constraint at both secondary transmitter and relay. In addition, we investigate the effect of the number of primary transceivers on the optimal energy harvesting duration that minimizes the secondary outage probability. By utilizing the primary interference as a useful energy source in the energy harvesting phase, the secondary network achieves a better outage performance.Comment: 6 pages, 5 figures, To be presented at IEEE GLOBECOM 201
    corecore