316 research outputs found

    Enabling non-linear energy harvesting in power domain based multiple access in relaying networks: Outage and ergodic capacity performance analysis

    Get PDF
    The Power Domain-based Multiple Access (PDMA) scheme is considered as one kind of Non-Orthogonal Multiple Access (NOMA) in green communications and can support energy-limited devices by employing wireless power transfer. Such a technique is known as a lifetime-expanding solution for operations in future access policy, especially in the deployment of power-constrained relays for a three-node dual-hop system. In particular, PDMA and energy harvesting are considered as two communication concepts, which are jointly investigated in this paper. However, the dual-hop relaying network system is a popular model assuming an ideal linear energy harvesting circuit, as in recent works, while the practical system situation motivates us to concentrate on another protocol, namely non-linear energy harvesting. As important results, a closed-form formula of outage probability and ergodic capacity is studied under a practical non-linear energy harvesting model. To explore the optimal system performance in terms of outage probability and ergodic capacity, several main parameters including the energy harvesting coefficients, position allocation of each node, power allocation factors, and transmit signal-to-noise ratio (SNR) are jointly considered. To provide insights into the performance, the approximate expressions for the ergodic capacity are given. By matching analytical and Monte Carlo simulations, the correctness of this framework can be examined. With the observation of the simulation results, the figures also show that the performance of energy harvesting-aware PDMA systems under the proposed model can satisfy the requirements in real PDMA applications.Web of Science87art. no. 81

    Outage performance analysis of cell-center/edge users under two policies of energy harvesting

    Get PDF
    In this paper, two energy harvesting policies deploying in cooperative non-orthogonal multiple access (NOMA) systems are considered. After period of wireless power transfer, the NOMA users including cell-edge and cell-center users simultaneously transmit the superposition coded symbols to the base station (BS). In the last time slot, the BS decodes to achieve its signal based on superposition coded symbol with corresponding power allocation factors. This paper provides exact expressions of outage probability in two schemes. Performance gap of two NOMA users can be raised by providing different power allocation factors. It is confirmed by numerical result. Distance and data rate are main factors affecting outage performance. Scheme I exhibit scenario where power beacon transmits energy signal to NOMA user while the BS feeds energy to NOMA user in Scheme II. It is shown that outage performance of Scheme I is better than that of Scheme II.Web of Science254807

    Non-Orthogonal Multiple Access in a mmWave Based IoT Wireless System with SWIPT

    Get PDF
    This paper applies non-orthogonal multiple access (NOMA) and relaying schemes in a mmWave based wireless heterogeneous system that aims to support Internet of Things (IoT) applications. The system consists of high power base stations, low-power relays, and low-power IoT devices. Due to the ad hoc deployment nature of low-power relays, they have very limited access to wireline power charging facilities. Furthermore, IoT devices normally have limited power and short battery life. The study assumes low-power relays and IoT devices are capable of energy harvest functionality. With the help of relays or IoT devices, downlink NOMA transmission consists of two phases. In the first phase, the BS sends a composite signal to a UE and a selected relay simultaneously by applying NOMA. After receiving the signal, relay or the IoT device split the signal into two parts. One part is for information decoding and the other part is for energy harvesting. In the second phase, the BS sends another message to UE 1 while the relay sends the decoded message to UE 2 by using the harvested energy in phase 1. The outage problem of the proposed scheme is analyzed and simulations results are presented to verify the theoretical results

    On the power-splitting relaying protocol for SWIPT with multiple UAVs in downlink NOMA-IoT networks

    Get PDF
    Unmanned aerial vehicle (UAV) communication and non-orthogonal multiple access (NOMA) are two promising technologies for wireless 5G networks and beyond. The UAVs can be used as flying base stations to form line-of-sight communication links to the Internet of things devices (IDs) and to enhance the performance of usual terrestrial cellular networks. Moreover, the UAVs can also be deployed as flying relay nodes for forwarding data from a base station (BS) to the IDs. On the other hand, non-orthogonal resource sharing for many concurrent users is exploited in NOMA, thus improving spectrum efficiency (SE) and supporting massive connections. The NOMA combined with energy harvesting (EH) in an amplify-and-forward (AF) with cooperative UAV systems is researched. Specifically, the UAVs act as rotary-wing relays to forward data from the BSs to two IDs. This paper focuses on the analysis of outage probabilities (OPs), system throughput, and energy efficiency (EE) for two IDs. Besides, we also do the asymptotic analysis of OPs at high signal-to-noise ratios (SNRs). Furthermore, this paper also inspects the impacts of the UAV-based relaying on the OP, system throughput, and EE of the proposed NOMA scheme. The derived asymptotic expansions show that the suggested model can enhance user fairness and the analytical results match the simulation results

    Secrecy outage analysis for Alamouti space-time block coded non-orthogonal multiple access

    Get PDF
    This letter proposed a novel transmission technique for physical layer security by applying the Alamouti Space-Time Block Coded Non-orthogonal Multiple Access (STBC-NOMA) scheme. The secure outage performance under both perfect successive interference cancellation (pSIC) and imperfect successive interference cancellation (ipSIC) are investigated. In particular, novel exact and asymptotic expressions of secrecy outage probability are derived. Numerical and theoretical results are presented to corroborate the derived expressions and to demonstrate the superiority of STBC-NOMA and its ability to enhance the secrecy outage performance compared to conventional NOMA
    corecore