5,787 research outputs found

    Electricity Market Designs for Demand Response from Residential Customers

    Get PDF
    The main purpose of this dissertation is to design an appropriate tariff program for residential customers that encourages customers to participate in the system while satisfying market operators and utilities goals. This research investigates three aspects critical for successful programs: tariff designs for DR, impact of renewable on such tariffs, and load elasticity estimates. First, both categories of DR are modeled based on the demand-price elasticity concept and used to design an optimum scheme for achieving the maximum benefit of DR. The objective is to not only reduce costs and improve reliability but also to increase customer acceptance of a DR program by limiting price volatility. A time of use (TOU) program is considered for a PB scheme designed using a monthly peak and off peak tariff. For the IBDR, a novel optimization is proposed that in addition to calculation of an adequate and a reasonable amount of load change for the incentive also finds the best times to request DR. Second, the effect of both DR programs under a high penetration of renewable resources is investigated. LMP variation after renewable expansion is more highly correlated with renewable’s intermittent output than the load profile. As a result, a TOU program is difficult to successfully implement; however, analysis shows IBDR can diminish most of the volatile price changes in WECC. To model risk associated with renewable uncertainty, a robust optimization is designed considering market price and elasticity uncertainty. Third, a comprehensive study to estimate residential load elasticity in an IBDR program. A key component in all demand response programs design is elasticity, which implies customer reaction to LSEs offers. Due to limited information, PB elasticity is used in IBDR as well. Customer elasticity is calculated using data from two nationwide surveys and integrated with a detailed residential load model. In addition, IB elasticity is reported at the individual appliance level, which is more effective than one for the aggregate load of the feeder. Considering the importance of HVAC in the aggregate load signal, its elasticity is studied in greater detail and estimated for different customer groupings

    Microgrids & District Energy: Pathways To Sustainable Urban Development

    Get PDF
    A microgrid is an energy system specifically designed to meet some of the energy needs of a group of buildings, a campus, or an entire community. It can include local facilities that generate electricity, heating, and/or cooling; store energy; distribute the energy generated; and manage energy consumption intelligently and in real time. Microgrids enable economies of scale that facilitate local production of energy in ways that can advance cost reduction, sustainability, economic development, and resilience goals. As they often involve multiple stakeholders, and may encompass numerous distinct property boundaries, municipal involvement is often a key factor for successful implementation. This report provides an introduction to microgrid concepts, identifies the benefits and most common road blocks to implementation, and discusses proactive steps municipalities can take to advance economically viable and environmentally superior microgrids. It also offers advocacy suggestions for municipal leaders and officials to pursue at the state and regional level. The contents are targeted to municipal government staff but anyone looking for introductory material on microgrids should find it useful

    Investigation of Electric Water Heaters as Demand Response Resources and Their Impact on Power System Operational Reliability

    Get PDF
    The electricity consumption has increased dramatically in past decades due to the improvement of people’s life standard and the increase of their incomes. Some uncertainties have occurred because of an increasing electricity consumption at the household level. As a result, the high power consumption of massive households will affect power system reliability. Recently, the traditional power grid is being transformed to the smart grid, which is an effective way to deal with these issues. The electricity utility could manage the demand side resources using different kinds of Demand Response (DR) methods. Residential resource is an important part besides industrial resource and commercial resource. With the deployment of Home Energy Management System (HEMS) and smart household devices, users’ behavior could be adjusted to respond to the utility signal. Electric Water Heaters (EWHs) account for a huge percentage of energy consumption among all the home appliances. Aggregated EWHs are idea candidates as demand response resources whose power consumption pattern can be modified because they not only consume lots of energy but also have heat storage capability. Therefore, EWHs can react to the optimal operation signal without affecting customers’ daily needs. In this way, electricity utility could treat EWHs as a kind of interruptible load to provide operating reserves to improve power system reliability. In this thesis, a Binary Particle Swarm Optimization (BPSO) algorithm is utilized to perform the optimization of EWHs. The goal of each EWH optimization using BPSO is to minimize the customers’ electricity cost. Therefore, Time-Of-Use (TOU) electricity rate is utilized as the DR incentive. Meanwhile, the customers’ daily need for hot water should be guaranteed, so a comfort level index is enforced in the optimization process. The thermal model of EWH and water usage profile are used to calculate the real-time hot water temperature. Aggregating thousands of EWHs will have positive influences on power system reliability when massive EWHs are utilized as interruptible loads. EWHs could compensate for the Unit Commitment Risk (UCR) considering the operating reserve capacity they can provide. The UCR reduction is used to calculate and analyze the influence of aggregated EWHs. A Reliability Test System is modified to test the capacity of aggregated EWHs in this study. Based on the simulation results, the proposed optimization strategy for EWHs is proved to be practical. The customers’ electricity bill has declined effectively and the user’s comfort level, considering different water temperature set point ranges, is ensured. This thesis provides a practicable scheme for residential customers to arrange their EWHs more reasonably. The simulation results show the aggregated EWHs’ load curve and indicate that the proposed method shifts aggregated EWHs load effectively during some peak hours. According to the calculation results of UCR reduction, the aggregated EWHs is turned out to be a great candidate for power system to improve the reliability during peak-hours

    Focusing on Demand Side Management in the Future of the Electric Grid

    Get PDF
    The widespread blackout that occurred on August 14, 2003 (“the blackout”) exposed the weaknesses of the current electric transmission grid structure, and underscored the need for improvements to the transmission grid in the United States. The outage knocked out power to approximately fifty million people in Ohio, Michigan, Pennsylvania, New York, Vermont, Massachusetts, Connecticut, New Jersey and the Canadian province of Ontario.\ud The total cost in the United States was estimated to be between 4and4 and 10 billion
    • …
    corecore