1,453 research outputs found

    Outage Capacity of Incremental Relaying at Low Signal-to-Noise Ratios

    Full text link
    We present the \epsilon-outage capacity of incremental relaying at low signal-to-noise ratios (SNR) in a wireless cooperative network with slow Rayleigh fading channels. The relay performs decode-and-forward and repetition coding is employed in the network, which is optimal in the low SNR regime. We derive an expression on the optimal relay location that maximizes the \epsilon-outage capacity. It is shown that this location is independent of the outage probability and SNR but only depends on the channel conditions represented by a path-loss factor. We compare our results to the \epsilon-outage capacity of the cut-set bound and demonstrate that the ratio between the \epsilon-outage capacity of incremental relaying and the cut-set bound lies within 1/\sqrt{2} and 1. Furthermore, we derive lower bounds on the \epsilon-outage capacity for the case of K relays.Comment: 5 pages, 4 figures, to be presented at VTC Fall 2009 in Anchorage, Alask

    Comparing the Outage Capacity of Transmit Diversity and Incremental Relaying

    Get PDF
    We present the e-outage capacity of incremental relaying at low signal-to-noise ratios (SNR) in a wireless cooperative network with slow Rayleigh fading channels. The relay performs decode-and-forward and repetition coding is employed in the network, which is optimal in the low SNR regime. We derive an expression on the optimal relay location that maximizes the e-outage capacity. It is shown that this location is independent of the outage probability and SNR but only depends on the channel conditions represented by a path-loss factor. We compare our results to the e-outage capacity of the cut-set bound and demonstrate that the ratio between the e-outage capacity of incremental relaying and the cut-set bound lies within 1/wurzel2 and 1. Furthermore, we derive lower bounds on the e-outage capacity for the case of K relays

    Asymptotic Capacity of Large Fading Relay Networks with Random Node Failures

    Full text link
    To understand the network response to large-scale physical attacks, we investigate the asymptotic capacity of a half-duplex fading relay network with random node failures when the number of relays NN is infinitely large. In this paper, a simplified independent attack model is assumed where each relay node fails with a certain probability. The noncoherent relaying scheme is considered, which corresponds to the case of zero forward-link channel state information (CSI) at the relays. Accordingly, the whole relay network can be shown equivalent to a Rayleigh fading channel, where we derive the ϵ\epsilon-outage capacity upper bound according to the multiple access (MAC) cut-set, and the ϵ\epsilon-outage achievable rates for both the amplify-and-forward (AF) and decode-and-forward (DF) strategies. Furthermore, we show that the DF strategy is asymptotically optimal as the outage probability ϵ\epsilon goes to zero, with the AF strategy strictly suboptimal over all signal to noise ratio (SNR) regimes. Regarding the rate loss due to random attacks, the AF strategy suffers a less portion of rate loss than the DF strategy in the high SNR regime, while the DF strategy demonstrates more robust performance in the low SNR regime.Comment: 24 pages, 5 figures, submitted to IEEE Transactions on Communication

    On Outage Probability and Diversity-Multiplexing Tradeoff in MIMO Relay Channels

    Full text link
    Fading MIMO relay channels are studied analytically, when the source and destination are equipped with multiple antennas and the relays have a single one. Compact closed-form expressions are obtained for the outage probability under i.i.d. and correlated Rayleigh-fading links. Low-outage approximations are derived, which reveal a number of insights, including the impact of correlation, of the number of antennas, of relay noise and of relaying protocol. The effect of correlation is shown to be negligible, unless the channel becomes almost fully correlated. The SNR loss of relay fading channels compared to the AWGN channel is quantified. The SNR-asymptotic diversity-multiplexing tradeoff (DMT) is obtained for a broad class of fading distributions, including, as special cases, Rayleigh, Rice, Nakagami, Weibull, which may be non-identical, spatially correlated and/or non-zero mean. The DMT is shown to depend not on a particular fading distribution, but rather on its polynomial behavior near zero, and is the same for the simple "amplify-and-forward" protocol and more complicated "decode-and-forward" one with capacity achieving codes, i.e. the full processing capability at the relay does not help to improve the DMT. There is however a significant difference between the SNR-asymptotic DMT and the finite-SNR outage performance: while the former is not improved by using an extra antenna on either side, the latter can be significantly improved and, in particular, an extra antenna can be traded-off for a full processing capability at the relay. The results are extended to the multi-relay channels with selection relaying and typical outage events are identified.Comment: accepted by IEEE Trans. on Comm., 201

    Outage Capacity of Bursty Amplify-and-Forward with Incremental Relaying

    Full text link
    We derive the outage capacity of a bursty version of the amplify-and-forward (BAF) protocol for small signal-to-noise ratios when incremental relaying is used. We show that the ratio between the outage capacities of BAF and the cut-set bound is independent of the relay position and that BAF is outage optimal for certain conditions on the target rate R. This is in contrast to decode-and-forward with incremental relaying, where the relay location strongly determines the performance of the cooperative protocol. We further derive the outage capacity for a network consisting of an arbitrary number of relay nodes. In this case the relays transmit in subsequent partitions of the overall transmission block and the destination accumulates signal-to-noise ratio until it is able to decode.Comment: 5 pages, 3 figures, submitted to IEEE International Symposium on Information Theory, Austin, TX, June 13-18, 201

    From Multi-Keyholes to Measure of Correlation and Power Imbalance in MIMO Channels: Outage Capacity Analysis

    Full text link
    An information-theoretic analysis of a multi-keyhole channel, which includes a number of statistically independent keyholes with possibly different correlation matrices, is given. When the number of keyholes or/and the number of Tx/Rx antennas is large, there is an equivalent Rayleigh-fading channel such that the outage capacities of both channels are asymptotically equal. In the case of a large number of antennas and for a broad class of fading distributions, the instantaneous capacity is shown to be asymptotically Gaussian in distribution, and compact, closed-form expressions for the mean and variance are given. Motivated by the asymptotic analysis, a simple, full-ordering scalar measure of spatial correlation and power imbalance in MIMO channels is introduced, which quantifies the negative impact of these two factors on the outage capacity in a simple and well-tractable way. It does not require the eigenvalue decomposition, and has the full-ordering property. The size-asymptotic results are used to prove Telatar's conjecture for semi-correlated multi-keyhole and Rayleigh channels. Since the keyhole channel model approximates well the relay channel in the amplify-and-forward mode in certain scenarios, these results also apply to the latterComment: accepted by IEEE IT Trans., 201
    corecore