1,137 research outputs found

    Performance Analysis of Best Relaying Protocol Selection with Interferences at Relays

    Get PDF
    In this paper, we investigate the performance of selecting the best protocol between amplify and forward (AF) and decode and forward (DF) in multiple relay networks with multiple interferences at relays. In the selection scheme, the best protocol between AF and DF is selected depending on the comparisons of signal-to-interference and noise ratio (SINR) for all source-relay links. All relays measure the received SINR to decide forwarding signal or not. When SINR is above a certain threshold then DF is used otherwise AF is used. Particularly, we develop an accurate mathematical model for best relaying protocol by considering the effect of interferences to our scheme. Firstly, we derive the asymptotic closed form expression for the symbol error rate (SER) for the system under study. Also we derive an upper and lower bound of symbol error rate and show how they were tight with exact SER. Furthermore an approximate expression for the outage probability is derived. Numerical results are finally presented to validate the theoretical analysis with a different number of relays

    Outage rates and outage durations of opportunistic relaying systems

    Full text link
    Opportunistic relaying is a simple yet efficient cooperation scheme that achieves full diversity and preserves the spectral efficiency among the spatially distributed stations. However, the stations' mobility causes temporal correlation of the system's capacity outage events, which gives rise to its important second-order outage statistical parameters, such as the average outage rate (AOR) and the average outage duration (AOD). This letter presents exact analytical expressions for the AOR and the AOD of an opportunistic relaying system, which employs a mobile source and a mobile destination (without a direct path), and an arbitrary number of (fixed-gain amplify-and-forward or decode-and-forward) mobile relays in Rayleigh fading environment

    ARQ Protocols in Cognitive Decode-and-Forward Relay Networks: Opportunities Gain

    Get PDF
    In this paper, two novel automatic-repeat-request (ARQ) based protocols were proposed, which exploit coop- eration opportunity inherent in secondary retransmission to create access opportunities. If the signal was not decoded correctly in destination, another user can be acted as a relay to reduce retransmission rounds by relaying the signal. For comparison, we also propose a Direct ARQ Protocol. Specif- ically, we derive the exact closed-form outage probability of three protocols, which provides an effective means to evalu- ate the effects of several parameters. Moreover, we propose a new metric to evaluate the performance improvement for cognitive networks. Finally, Monte Carlo simulations were presented to validate the theory analysis, and a comparison is made among the three protocols

    On Security and reliability using cooperative transmissions in sensor networks

    Get PDF
    Cooperative transmissions have received recent attention and research papers have demonstrated their benefits for wireless networks. Such benefits include improving the reliability of links through diversity and/or increasing the reach of a link compared to a single transmitter transmitting to a single receiver (single-input single-output or SISO). In one form of cooperative transmissions, multiple nodes can act as virtual antenna elements and provide diversity gain or range improvement using space-time coding. In a multi-hop ad hoc or sensor network, a source node can make use of its neighbors as relays with itself to reach an intermediate node with greater reliability or at a larger distance than otherwise possible. The intermediate node will use its neighbors in a similar manner and this process continues till the destination is reached. Thus, for the same reliability of a link as SISO, the number of hops between a source and destination may be reduced using cooperative transmissions as each hop spans a larger distance. However, the presence of ma-licious or compromised nodes in the network impacts the benefits obtained with cooperative transmissions. Using more relays can increase the reach of a link, but if one or more relays are malicious, the transmission may fail. However, the relationships between the number of relays, the number of hops, and success probabilities are not trivial to determine. In this paper, we analyze this problem to understand the conditions under which cooperative transmissions fare better or worse than SISO transmissions. We take into consideration additional parameters such as the path-loss exponent and provide a framework that allows us to evaluate the conditions when cooperative transmissions are better than SISO transmissions. This analysis provides insights that can be employed before resorting to simulations or experimentation. © Springer Science+Business Media, LLC 2012

    Outage Probability of Wireless Ad Hoc Networks with Cooperative Relaying

    Full text link
    In this paper, we analyze the performance of cooperative transmissions in wireless ad hoc networks with random node locations. According to a contention probability for message transmission, each source node can either transmits its own message signal or acts as a potential relay for others. Hence, each destination node can potentially receive two copies of the message signal, one from the direct link and the other from the relay link. Taking the random node locations and interference into account, we derive closed-form expressions for the outage probability with different combining schemes at the destination nodes. In particular, the outage performance of optimal combining, maximum ratio combining, and selection combining strategies are studied and quantified.Comment: 7 pages; IEEE Globecom 201

    Outage Probability Analysis of Full-Duplex Amplify-and-Forward MIMO Relay Systems

    Get PDF
    abstract: Multiple-input multiple-output systems have gained focus in the last decade due to the benefits they provide in enhancing the quality of communications. On the other hand, full-duplex communication has attracted remarkable attention due to its ability to improve the spectral efficiency compared to the existing half-duplex systems. Using full-duplex communications on MIMO co-operative networks can provide us solutions that can completely outperform existing systems with simultaneous transmission and reception at high data rates. This thesis considers a full-duplex MIMO relay which amplifies and forwards the received signals, between a source and a destination that do not a have line of sight. Full-duplex mode raises the problem of self-interference. Though all the links in the system undergo frequency flat fading, the end-to-end effective channel is frequency selective. This is due to the imperfect cancellation of the self-interference at the relay and this residual self-interference acts as intersymbol interference at the destination which is treated by equalization. This also leads to complications in form of recursive equations to determine the input-output relationship of the system. This also leads to complications in the form of recursive equations to determine the input-output relationship of the system. To overcome this, a signal flow graph approach using Mason's gain formula is proposed, where the effective channel is analyzed with keen notice to every loop and path the signal traverses. This gives a clear understanding and awareness about the orders of the polynomials involved in the transfer function, from which desired conclusions can be drawn. But the complexity of Mason's gain formula increases with the number of antennas at relay which can be overcome by the proposed linear algebraic method. Input-output relationship derived using simple concepts of linear algebra can be generalized to any number of antennas and the computation complexity is comparatively very low. For a full-duplex amplify-and-forward MIMO relay system, assuming equalization at the destination, new mechanisms have been implemented at the relay that can compensate the effect of residual self-interference namely equal-gain transmission and antenna selection. Though equal-gain transmission does not perform better than the maximal ratio transmission, a trade-off can be made between performance and implementation complexity. Using the proposed antenna selection strategy, one pair of transmit-receive antennas at the relay is selected based on four selection criteria discussed. Outage probability analysis is performed for all the strategies presented and detailed comparison has been established. Considering minimum mean-squared error decision feedback equalizer at the destination, a bound on the outage probability has been obtained for the antenna selection case and is used for comparisons. A cross-over point is observed while comparing the outage probabilities of equal-gain transmission and antenna selection techniques, as the signal-to-noise ratio increases and from that point antenna selection outperforms equal-gain transmission and this is explained by the fact of reduced residual self-interference in antenna selection method.Dissertation/ThesisMasters Thesis Electrical Engineering 201
    • …
    corecore