1,022 research outputs found

    Cognitive Multihop Wireless Sensor Networks over Nakagami-m Fading Channels

    Get PDF
    This work is supported by the National Science Foundation of China (NSFC) under Grant 61372114, by the National 973 Program of China under Grant 2012CB316005, by the Joint Funds of NSFC-Guangdong under Grant U1035001, and by Beijing Higher Education Young Elite Teacher Project (no. YETP0434)

    End to End Performance Analysis of Relay Cooperative Communication Based on Parked Cars

    Full text link
    Parking lots (PLs) are usually full with cars. If these cars are formed into a self-organizing vehicular network, they can be new kind of road side units (RSUs) in urban area to provide communication data forwarding between mobile terminals nearby and a base station. However cars in PLs can leave at any time, which is neglected in the existing studies. In this paper, we investigate relay cooperative communication based on parked cars in PLs. Taking the impact of the car's leaving behavior into consideration, we derive the expressions of outage probability in a two-hop cooperative communication and its link capacity. Finally, the numerical results show that the impact of a car's arriving time is greater than the impact of the duration the car has parked on outage probability.Comment: 7 pages, 7 figures, accepted by ICACT201

    A Hop-by-Hop Relay Selection Strategy in Multi-Hop Cognitive Relay Networks

    Get PDF
    In this paper, a hop-by-hop relay selection strategy for multi-hop underlay cognitive relay networks (CRNs) is proposed. In each stage, relays that successfully decode the message from previous hop form a decoding set. Taking both maximum transmit power and maximum interference constraints into consideration, the relay in the decoding set which has the largest number of channels with an acceptable signal-to-noise ratio (SNR) level to the relays in the next stage is selected for retransmission. Therefore, relay selection in each stage only relies on channel state information (CSI) of the channels in that stage and does not require the CSI of any other stage. We analyze the performance of the proposed strategy in terms of endto-end outage probability and throughput, and show that the results match those obtained from simulation closely. Moreover, we derive the asymptotic end-to-end outage probability of the proposed strategy when there is no upper bound on transmitters’ power. We compare this strategy to other hop-by-hop strategies that have appeared recently in the literature and show that this strategy has the best performance in terms of outage probability and throughput. Finally it is shown that the outage probability and throughput of the proposed strategy are very close to that of exhaustive strategy which provides a lower bound for outage probability and an upper bound for throughput of all path selection strategies

    Performance of cluster-based cognitive multihop networks under joint impact of hardware noises and non-identical primary co-channel interference

    Get PDF
    In this paper, we evaluate outage probability (OP) of a cluster-based multi-hop protocol operating on an underlay cognitive radio (CR) mode. The primary network consists of multiple independent transmit/receive pairs, and the primary transmitters seriously cause co-channel interference (CCI) to the secondary receivers. To improve the outage performance for the secondary network under the joint impact of the CCI and hardware imperfection, we employ the best relay selection at each hop. Moreover, the destination is equipped with multiple antennas and uses the selection combining (SC) technique to enhance the reliability of the data transmission at the last hop. For performance evaluation, we first derive an exact formula of OP for the primary network which is used to calculate the transmit power of the secondary transmitters. Next, an exact closed-form expression of the end-to-end OP for the secondary network is derived over Rayleigh fading channels. We then perform Monte-Carlo simulations to validate the derivations. The results present that the CCI caused by the primary operations significantly impacts on the outage performance of the secondary network

    Relay Selection Strategies for Multi-hop Cooperative Networks

    Get PDF
    In this dissertation we consider several relay selection strategies for multi-hop cooperative networks. The relay selection strategies we propose do not require a central controller (CC). Instead, the relay selection is on a hop-by-hop basis. As such, these strategies can be implemented in a distributed manner. Therefore, increasing the number of hops in the network would not increase the complexity or time consumed for the relay selection procedure of each hop. We first investigate the performance of a hop-by-hop relay selection strategy for multi-hop decode-and-forward (DF) cooperative networks. In each relay cluster, relays that successfully receive and decode the message from the previous hop form a decoding set for relaying, and the relay which has the highest signal-to-noise ratio (SNR) link to the next hop is then selected for retransmission. We analyze the performance of this method in terms of end-to-end outage probability, and we derive approximations for the ergodic capacity and the effective ergodic capacity of this strategy. Next we propose a novel hop-by-hop relay selection strategy where the relay in the decoding set with the largest number of ``good\u27\u27 channels to the next stage is selected for retransmission. We analyze the performance of this method in terms of end-to-end outage probability in the case of perfect and imperfect channel state information (CSI). We also investigate relay selection strategies in underlay spectrum sharing cognitive relay networks. We consider a two-hop DF cognitive relay network with a constraint on the interference to the primary user. The outage probability of the secondary user and the interference probability at the primary user are analyzed under imperfect CSI scenario. Finally we introduce a hop-by-hop relay selection strategy for underlay spectrum sharing multi-hop relay networks. Relay selection in each stage is only based on the CSI in that hop. It is shown that in terms of outage probability, the performance of this method is nearly optimal
    • …
    corecore