262 research outputs found

    The Application of MIMO to Non-Orthogonal Multiple Access

    Full text link
    This paper considers the application of multiple-input multiple-output (MIMO) techniques to non-orthogonal multiple access (NOMA) systems. A new design of precoding and detection matrices for MIMO-NOMA is proposed and its performance is analyzed for the case with a fixed set of power allocation coefficients. To further improve the performance gap between MIMO-NOMA and conventional orthogonal multiple access schemes, user pairing is applied to NOMA and its impact on the system performance is characterized. More sophisticated choices of power allocation coefficients are also proposed to meet various quality of service requirements. Finally computer simulation results are provided to facilitate the performance evaluation of MIMO-NOMA and also demonstrate the accuracy of the developed analytical results

    Enabling non-linear energy harvesting in power domain based multiple access in relaying networks: Outage and ergodic capacity performance analysis

    Get PDF
    The Power Domain-based Multiple Access (PDMA) scheme is considered as one kind of Non-Orthogonal Multiple Access (NOMA) in green communications and can support energy-limited devices by employing wireless power transfer. Such a technique is known as a lifetime-expanding solution for operations in future access policy, especially in the deployment of power-constrained relays for a three-node dual-hop system. In particular, PDMA and energy harvesting are considered as two communication concepts, which are jointly investigated in this paper. However, the dual-hop relaying network system is a popular model assuming an ideal linear energy harvesting circuit, as in recent works, while the practical system situation motivates us to concentrate on another protocol, namely non-linear energy harvesting. As important results, a closed-form formula of outage probability and ergodic capacity is studied under a practical non-linear energy harvesting model. To explore the optimal system performance in terms of outage probability and ergodic capacity, several main parameters including the energy harvesting coefficients, position allocation of each node, power allocation factors, and transmit signal-to-noise ratio (SNR) are jointly considered. To provide insights into the performance, the approximate expressions for the ergodic capacity are given. By matching analytical and Monte Carlo simulations, the correctness of this framework can be examined. With the observation of the simulation results, the figures also show that the performance of energy harvesting-aware PDMA systems under the proposed model can satisfy the requirements in real PDMA applications.Web of Science87art. no. 81

    Outage Performance of Uplink Rate Splitting Multiple Access with Randomly Deployed Users

    Full text link
    With the rapid proliferation of smart devices in wireless networks, more powerful technologies are expected to fulfill the network requirements of high throughput, massive connectivity, and diversify quality of service. To this end, rate splitting multiple access (RSMA) is proposed as a promising solution to improve spectral efficiency and provide better fairness for the next-generation mobile networks. In this paper, the outage performance of uplink RSMA transmission with randomly deployed users is investigated, taking both user scheduling schemes and power allocation strategies into consideration. Specifically, the greedy user scheduling (GUS) and cumulative distribution function (CDF) based user scheduling (CUS) schemes are considered, which could maximize the rate performance and guarantee scheduling fairness, respectively. Meanwhile, we re-investigate cognitive power allocation (CPA) strategy, and propose a new rate fairness-oriented power allocation (FPA) strategy to enhance the scheduled users' rate fairness. By employing order statistics and stochastic geometry, an analytical expression of the outage probability for each scheduling scheme combining power allocation is derived to characterize the performance. To get more insights, the achieved diversity order of each scheme is also derived. Theoretical results demonstrate that both GUS and CUS schemes applying CPA or FPA strategy can achieve full diversity orders, and the application of CPA strategy in RSMA can effectively eliminate the secondary user's diversity order constraint from the primary user. Simulation results corroborate the accuracy of the analytical expressions, and show that the proposed FPA strategy can achieve excellent rate fairness performance in high signal-to-noise ratio region.Comment: 38 pages,8 figure
    • …
    corecore