4,848 research outputs found

    Out-of-Distribution Detection Using Neural Rendering Generative Models

    Get PDF
    Out-of-distribution (OoD) detection is a natural downstream task for deep generative models, due to their ability to learn the input probability distribution. There are mainly two classes of approaches for OoD detection using deep generative models, viz., based on likelihood measure and the reconstruction loss. However, both approaches are unable to carry out OoD detection effectively, especially when the OoD samples have smaller variance than the training samples. For instance, both flow based and VAE models assign higher likelihood to images from SVHN when trained on CIFAR-10 images. We use a recently proposed generative model known as neural rendering model (NRM) and derive metrics for OoD. We show that NRM unifies both approaches since it provides a likelihood estimate and also carries out reconstruction in each layer of the neural network. Among various measures, we found the joint likelihood of latent variables to be the most effective one for OoD detection. Our results show that when trained on CIFAR-10, lower likelihood (of latent variables) is assigned to SVHN images. Additionally, we show that this metric is consistent across other OoD datasets. To the best of our knowledge, this is the first work to show consistently lower likelihood for OoD data with smaller variance with deep generative models

    Out-of-Distribution Detection Using Neural Rendering Generative Models

    Full text link
    Out-of-distribution (OoD) detection is a natural downstream task for deep generative models, due to their ability to learn the input probability distribution. There are mainly two classes of approaches for OoD detection using deep generative models, viz., based on likelihood measure and the reconstruction loss. However, both approaches are unable to carry out OoD detection effectively, especially when the OoD samples have smaller variance than the training samples. For instance, both flow based and VAE models assign higher likelihood to images from SVHN when trained on CIFAR-10 images. We use a recently proposed generative model known as neural rendering model (NRM) and derive metrics for OoD. We show that NRM unifies both approaches since it provides a likelihood estimate and also carries out reconstruction in each layer of the neural network. Among various measures, we found the joint likelihood of latent variables to be the most effective one for OoD detection. Our results show that when trained on CIFAR-10, lower likelihood (of latent variables) is assigned to SVHN images. Additionally, we show that this metric is consistent across other OoD datasets. To the best of our knowledge, this is the first work to show consistently lower likelihood for OoD data with smaller variance with deep generative models

    Expecting the Unexpected: Training Detectors for Unusual Pedestrians with Adversarial Imposters

    Full text link
    As autonomous vehicles become an every-day reality, high-accuracy pedestrian detection is of paramount practical importance. Pedestrian detection is a highly researched topic with mature methods, but most datasets focus on common scenes of people engaged in typical walking poses on sidewalks. But performance is most crucial for dangerous scenarios, such as children playing in the street or people using bicycles/skateboards in unexpected ways. Such "in-the-tail" data is notoriously hard to observe, making both training and testing difficult. To analyze this problem, we have collected a novel annotated dataset of dangerous scenarios called the Precarious Pedestrian dataset. Even given a dedicated collection effort, it is relatively small by contemporary standards (around 1000 images). To allow for large-scale data-driven learning, we explore the use of synthetic data generated by a game engine. A significant challenge is selected the right "priors" or parameters for synthesis: we would like realistic data with poses and object configurations that mimic true Precarious Pedestrians. Inspired by Generative Adversarial Networks (GANs), we generate a massive amount of synthetic data and train a discriminative classifier to select a realistic subset, which we deem the Adversarial Imposters. We demonstrate that this simple pipeline allows one to synthesize realistic training data by making use of rendering/animation engines within a GAN framework. Interestingly, we also demonstrate that such data can be used to rank algorithms, suggesting that Adversarial Imposters can also be used for "in-the-tail" validation at test-time, a notoriously difficult challenge for real-world deployment.Comment: To appear in CVPR 201

    An Intriguing Failing of Convolutional Neural Networks and the CoordConv Solution

    Full text link
    Few ideas have enjoyed as large an impact on deep learning as convolution. For any problem involving pixels or spatial representations, common intuition holds that convolutional neural networks may be appropriate. In this paper we show a striking counterexample to this intuition via the seemingly trivial coordinate transform problem, which simply requires learning a mapping between coordinates in (x,y) Cartesian space and one-hot pixel space. Although convolutional networks would seem appropriate for this task, we show that they fail spectacularly. We demonstrate and carefully analyze the failure first on a toy problem, at which point a simple fix becomes obvious. We call this solution CoordConv, which works by giving convolution access to its own input coordinates through the use of extra coordinate channels. Without sacrificing the computational and parametric efficiency of ordinary convolution, CoordConv allows networks to learn either complete translation invariance or varying degrees of translation dependence, as required by the end task. CoordConv solves the coordinate transform problem with perfect generalization and 150 times faster with 10--100 times fewer parameters than convolution. This stark contrast raises the question: to what extent has this inability of convolution persisted insidiously inside other tasks, subtly hampering performance from within? A complete answer to this question will require further investigation, but we show preliminary evidence that swapping convolution for CoordConv can improve models on a diverse set of tasks. Using CoordConv in a GAN produced less mode collapse as the transform between high-level spatial latents and pixels becomes easier to learn. A Faster R-CNN detection model trained on MNIST showed 24% better IOU when using CoordConv, and in the RL domain agents playing Atari games benefit significantly from the use of CoordConv layers.Comment: Published in NeurIPS 201

    Deep Convolutional Inverse Graphics Network

    Full text link
    This paper presents the Deep Convolution Inverse Graphics Network (DC-IGN), a model that learns an interpretable representation of images. This representation is disentangled with respect to transformations such as out-of-plane rotations and lighting variations. The DC-IGN model is composed of multiple layers of convolution and de-convolution operators and is trained using the Stochastic Gradient Variational Bayes (SGVB) algorithm. We propose a training procedure to encourage neurons in the graphics code layer to represent a specific transformation (e.g. pose or light). Given a single input image, our model can generate new images of the same object with variations in pose and lighting. We present qualitative and quantitative results of the model's efficacy at learning a 3D rendering engine.Comment: First two authors contributed equall

    Superimposition-guided Facial Reconstruction from Skull

    Full text link
    We develop a new algorithm to perform facial reconstruction from a given skull. This technique has forensic application in helping the identification of skeletal remains when other information is unavailable. Unlike most existing strategies that directly reconstruct the face from the skull, we utilize a database of portrait photos to create many face candidates, then perform a superimposition to get a well matched face, and then revise it according to the superimposition. To support this pipeline, we build an effective autoencoder for image-based facial reconstruction, and a generative model for constrained face inpainting. Our experiments have demonstrated that the proposed pipeline is stable and accurate.Comment: 14 pages; 14 figure

    Learning to Forecast Videos of Human Activity with Multi-granularity Models and Adaptive Rendering

    Full text link
    We propose an approach for forecasting video of complex human activity involving multiple people. Direct pixel-level prediction is too simple to handle the appearance variability in complex activities. Hence, we develop novel intermediate representations. An architecture combining a hierarchical temporal model for predicting human poses and encoder-decoder convolutional neural networks for rendering target appearances is proposed. Our hierarchical model captures interactions among people by adopting a dynamic group-based interaction mechanism. Next, our appearance rendering network encodes the targets' appearances by learning adaptive appearance filters using a fully convolutional network. Finally, these filters are placed in encoder-decoder neural networks to complete the rendering. We demonstrate that our model can generate videos that are superior to state-of-the-art methods, and can handle complex human activity scenarios in video forecasting

    On Pre-Trained Image Features and Synthetic Images for Deep Learning

    Full text link
    Deep Learning methods usually require huge amounts of training data to perform at their full potential, and often require expensive manual labeling. Using synthetic images is therefore very attractive to train object detectors, as the labeling comes for free, and several approaches have been proposed to combine synthetic and real images for training. In this paper, we show that a simple trick is sufficient to train very effectively modern object detectors with synthetic images only: We freeze the layers responsible for feature extraction to generic layers pre-trained on real images, and train only the remaining layers with plain OpenGL rendering. Our experiments with very recent deep architectures for object recognition (Faster-RCNN, R-FCN, Mask-RCNN) and image feature extractors (InceptionResnet and Resnet) show this simple approach performs surprisingly well

    Inverse Graphics with Probabilistic CAD Models

    Full text link
    Recently, multiple formulations of vision problems as probabilistic inversions of generative models based on computer graphics have been proposed. However, applications to 3D perception from natural images have focused on low-dimensional latent scenes, due to challenges in both modeling and inference. Accounting for the enormous variability in 3D object shape and 2D appearance via realistic generative models seems intractable, as does inverting even simple versions of the many-to-many computations that link 3D scenes to 2D images. This paper proposes and evaluates an approach that addresses key aspects of both these challenges. We show that it is possible to solve challenging, real-world 3D vision problems by approximate inference in generative models for images based on rendering the outputs of probabilistic CAD (PCAD) programs. Our PCAD object geometry priors generate deformable 3D meshes corresponding to plausible objects and apply affine transformations to place them in a scene. Image likelihoods are based on similarity in a feature space based on standard mid-level image representations from the vision literature. Our inference algorithm integrates single-site and locally blocked Metropolis-Hastings proposals, Hamiltonian Monte Carlo and discriminative data-driven proposals learned from training data generated from our models. We apply this approach to 3D human pose estimation and object shape reconstruction from single images, achieving quantitative and qualitative performance improvements over state-of-the-art baselines.Comment: For correspondence, contact [email protected]

    Attend, Infer, Repeat: Fast Scene Understanding with Generative Models

    Full text link
    We present a framework for efficient inference in structured image models that explicitly reason about objects. We achieve this by performing probabilistic inference using a recurrent neural network that attends to scene elements and processes them one at a time. Crucially, the model itself learns to choose the appropriate number of inference steps. We use this scheme to learn to perform inference in partially specified 2D models (variable-sized variational auto-encoders) and fully specified 3D models (probabilistic renderers). We show that such models learn to identify multiple objects - counting, locating and classifying the elements of a scene - without any supervision, e.g., decomposing 3D images with various numbers of objects in a single forward pass of a neural network. We further show that the networks produce accurate inferences when compared to supervised counterparts, and that their structure leads to improved generalization
    corecore