15,688 research outputs found

    MeshPipe: a Python-based tool for easy automation and demonstration of geometry processing pipelines

    Get PDF
    The popularization of inexpensive 3D scanning, 3D printing, 3D publishing and AR/VR display technologies have renewed the interest in open-source tools providing the geometry processing algorithms required to clean, repair, enrich, optimize and modify point-based and polygonal-based models. Nowadays, there is a large variety of such open-source tools whose user community includes 3D experts but also 3D enthusiasts and professionals from other disciplines. In this paper we present a Python-based tool that addresses two major caveats of current solutions: the lack of easy-to-use methods for the creation of custom geometry processing pipelines (automation), and the lack of a suitable visual interface for quickly testing, comparing and sharing different pipelines, supporting rapid iterations and providing dynamic feedback to the user (demonstration). From the user's point of view, the tool is a 3D viewer with an integrated Python console from which internal or external Python code can be executed. We provide an easy-to-use but powerful API for element selection and geometry processing. Key algorithms are provided by a high-level C library exposed to the viewer via Python-C bindings. Unlike competing open-source alternatives, our tool has a minimal learning curve and typical pipelines can be written in a few lines of Python code.Peer ReviewedPostprint (published version

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure

    Ligand displacement exposes binding site heterogeneity on CdSe nanocrystal surfaces

    Get PDF
    Nanocrystal ligand interactions and ligand exchange processes are usually described by a uniform distribution of equal binding sites. Here, we analyze this assumption by a quantitative study of the displacement of Z-type cadmium oleate ligands from CdSe nanocrystals by addition of L-type ligands. First, we determined the stoichiometry of the displacement reaction by analyzing the equilibrium upon dilution using solution nuclear magnetic resonance spectroscopy. We found that 1 equiv of tetramethylethylene-I,2-diamine (TMEDA) or 2 equiv of n-butylamine or benzylamine bind to the displaced cadmium oleate. We only reached a comprehensive description of the displacement isotherm by including two types of binding sites with a different equilibrium constant. We corroborated this finding by density functional theory calculations on a CdSe model nanocrystal, which show that even single facets contain a broad variety of binding sites. Finally, we analyzed the thermodynamics of the displacement equilibrium for the weaker binding sites by constructing van't Hoff plots for the different displacers. Whereas displacement with TMEDA appears to be enthalpically neutral, it is entropically favorable. In contrast, displacement with the primary amines is entropically unfavorable but is associated with a negative change in enthalpy. Since the distribution of binding energy emanates from the large fraction of edge and vertex sites on a nanocrystal facet, these findings are most likely inherent to nanocrystals in general and should be considered when analyzing surface reactions on such materials

    Generating bridge geometric digital twins from point clouds

    Get PDF
    The automation of digital twinning for existing bridges from point clouds remains unsolved. Extensive manual effort is required to extract object point clusters from point clouds followed by fitting them with accurate 3D shapes. Previous research yielded methods that can automatically generate surface primitives combined with rule-based classification to create labelled cuboids and cylinders. While these methods work well in synthetic datasets or simplified cases, they encounter huge challenges when dealing with realworld point clouds. In addition, bridge geometries, defined with curved alignments and varying elevations, are much more complicated than idealized cases. None of the existing methods can handle these difficulties reliably. The proposed framework employs bridge engineering knowledge that mimics the intelligence of human modellers to detect and model reinforced concrete bridge objects in imperfect point clouds. It directly produces labelled 3D objects in Industry Foundation Classes format without generating low-level shape primitives. Experiments on ten bridge point clouds indicate the framework achieves an overall detection F1-score of 98.4%, an average modelling accuracy of 7.05 cm, and an average modelling time of merely 37.8 seconds. This is the first framework of its kind to achieve high and reliable performance of geometric digital twin generation of existing bridges
    • …
    corecore