896 research outputs found

    Out-degree reducing partitions of digraphs

    Get PDF
    Let kk be a fixed integer. We determine the complexity of finding a pp-partition (V1,…,Vp)(V_1, \dots, V_p) of the vertex set of a given digraph such that the maximum out-degree of each of the digraphs induced by ViV_i, (1≤i≤p1\leq i\leq p) is at least kk smaller than the maximum out-degree of DD. We show that this problem is polynomial-time solvable when p≥2kp\geq 2k and NP{\cal NP}-complete otherwise. The result for k=1k=1 and p=2p=2 answers a question posed in \cite{bangTCS636}. We also determine, for all fixed non-negative integers k1,k2,pk_1,k_2,p, the complexity of deciding whether a given digraph of maximum out-degree pp has a 22-partition (V1,V2)(V_1,V_2) such that the digraph induced by ViV_i has maximum out-degree at most kik_i for i∈[2]i\in [2]. It follows from this characterization that the problem of deciding whether a digraph has a 2-partition (V1,V2)(V_1,V_2) such that each vertex v∈Viv\in V_i has at least as many neighbours in the set V3−iV_{3-i} as in ViV_i, for i=1,2i=1,2 is NP{\cal NP}-complete. This solves a problem from \cite{kreutzerEJC24} on majority colourings.Comment: 11 pages, 1 figur

    A semi-exact degree condition for Hamilton cycles in digraphs

    Full text link
    The paper is concerned with directed versions of Posa's theorem and Chvatal's theorem on Hamilton cycles in graphs. We show that for each a>0, every digraph G of sufficiently large order n whose outdegree and indegree sequences d_1^+ \leq ... \leq d_n^+ and d_1^- \leq >... \leq d_n^- satisfy d_i^+, d_i^- \geq min{i + a n, n/2} is Hamiltonian. In fact, we can weaken these assumptions to (i) d_i^+ \geq min{i + a n, n/2} or d^-_{n - i - a n} \geq n-i; (ii) d_i^- \geq min{i + a n, n/2} or d^+_{n - i - a n} \geq n-i; and still deduce that G is Hamiltonian. This provides an approximate version of a conjecture of Nash-Williams from 1975 and improves a previous result of K\"uhn, Osthus and Treglown

    Eulerian digraphs and toric Calabi-Yau varieties

    Full text link
    We investigate the structure of a simple class of affine toric Calabi-Yau varieties that are defined from quiver representations based on finite eulerian directed graphs (digraphs). The vanishing first Chern class of these varieties just follows from the characterisation of eulerian digraphs as being connected with all vertices balanced. Some structure theory is used to show how any eulerian digraph can be generated by iterating combinations of just a few canonical graph-theoretic moves. We describe the effect of each of these moves on the lattice polytopes which encode the toric Calabi-Yau varieties and illustrate the construction in several examples. We comment on physical applications of the construction in the context of moduli spaces for superconformal gauged linear sigma models.Comment: 27 pages, 8 figure

    The Interlace Polynomial

    Full text link
    In this paper, we survey results regarding the interlace polynomial of a graph, connections to such graph polynomials as the Martin and Tutte polynomials, and generalizations to the realms of isotropic systems and delta-matroids.Comment: 18 pages, 5 figures, to appear as a chapter in: Graph Polynomials, edited by M. Dehmer et al., CRC Press/Taylor & Francis Group, LL
    • …
    corecore