2,624 research outputs found

    How to combine diagrammatic logics

    Full text link
    This paper is a submission to the contest: How to combine logics? at the World Congress and School on Universal Logic III, 2010. We claim that combining "things", whatever these things are, is made easier if these things can be seen as the objects of a category. We define the category of diagrammatic logics, so that categorical constructions can be used for combining diagrammatic logics. As an example, a combination of logics using an opfibration is presented, in order to study computational side-effects due to the evolution of the state during the execution of an imperative program

    States and exceptions considered as dual effects

    Full text link
    In this paper we consider the two major computational effects of states and exceptions, from the point of view of diagrammatic logics. We get a surprising result: there exists a symmetry between these two effects, based on the well-known categorical duality between products and coproducts. More precisely, the lookup and update operations for states are respectively dual to the throw and catch operations for exceptions. This symmetry is deeply hidden in the programming languages; in order to unveil it, we start from the monoidal equational logic and we add progressively the logical features which are necessary for dealing with either effect. This approach gives rise to a new point of view on states and exceptions, which bypasses the problems due to the non-algebraicity of handling exceptions

    On the mathematical synthesis of equational logics

    Full text link
    We provide a mathematical theory and methodology for synthesising equational logics from algebraic metatheories. We illustrate our methodology by means of two applications: a rational reconstruction of Birkhoff's Equational Logic and a new equational logic for reasoning about algebraic structure with name-binding operators.Comment: Final version for publication in Logical Methods in Computer Scienc

    Adjunctions for exceptions

    Full text link
    An algebraic method is used to study the semantics of exceptions in computer languages. The exceptions form a computational effect, in the sense that there is an apparent mismatch between the syntax of exceptions and their intended semantics. We solve this apparent contradiction by efining a logic for exceptions with a proof system which is close to their syntax and where their intended semantics can be seen as a model. This requires a robust framework for logics and their morphisms, which is provided by categorical tools relying on adjunctions, fractions and limit sketches.Comment: In this Version 2, minor improvements are made to Version

    A parameterization process as a categorical construction

    Full text link
    The parameterization process used in the symbolic computation systems Kenzo and EAT is studied here as a general construction in a categorical framework. This parameterization process starts from a given specification and builds a parameterized specification by transforming some operations into parameterized operations, which depend on one additional variable called the parameter. Given a model of the parameterized specification, each interpretation of the parameter, called an argument, provides a model of the given specification. Moreover, under some relevant terminality assumption, this correspondence between the arguments and the models of the given specification is a bijection. It is proved in this paper that the parameterization process is provided by a free functor and the subsequent parameter passing process by a natural transformation. Various categorical notions are used, mainly adjoint functors, pushouts and lax colimits

    Diagrammatic Inference

    Full text link
    Diagrammatic logics were introduced in 2002, with emphasis on the notions of specifications and models. In this paper we improve the description of the inference process, which is seen as a Yoneda functor on a bicategory of fractions. A diagrammatic logic is defined from a morphism of limit sketches (called a propagator) which gives rise to an adjunction, which in turn determines a bicategory of fractions. The propagator, the adjunction and the bicategory provide respectively the syntax, the models and the inference process for the logic. Then diagrammatic logics and their morphisms are applied to the semantics of side effects in computer languages.Comment: 16 page
    • …
    corecore