17,457 research outputs found

    Managing Service-Heterogeneity using Osmotic Computing

    Full text link
    Computational resource provisioning that is closer to a user is becoming increasingly important, with a rise in the number of devices making continuous service requests and with the significant recent take up of latency-sensitive applications, such as streaming and real-time data processing. Fog computing provides a solution to such types of applications by bridging the gap between the user and public/private cloud infrastructure via the inclusion of a "fog" layer. Such approach is capable of reducing the overall processing latency, but the issues of redundancy, cost-effectiveness in utilizing such computing infrastructure and handling services on the basis of a difference in their characteristics remain. This difference in characteristics of services because of variations in the requirement of computational resources and processes is termed as service heterogeneity. A potential solution to these issues is the use of Osmotic Computing -- a recently introduced paradigm that allows division of services on the basis of their resource usage, based on parameters such as energy, load, processing time on a data center vs. a network edge resource. Service provisioning can then be divided across different layers of a computational infrastructure, from edge devices, in-transit nodes, and a data center, and supported through an Osmotic software layer. In this paper, a fitness-based Osmosis algorithm is proposed to provide support for osmotic computing by making more effective use of existing Fog server resources. The proposed approach is capable of efficiently distributing and allocating services by following the principle of osmosis. The results are presented using numerical simulations demonstrating gains in terms of lower allocation time and a higher probability of services being handled with high resource utilization.Comment: 7 pages, 4 Figures, International Conference on Communication, Management and Information Technology (ICCMIT 2017), At Warsaw, Poland, 3-5 April 2017, http://www.iccmit.net/ (Best Paper Award

    Hamiltonian Transformation to Compute Thermo-osmotic Forces.

    Get PDF
    If a thermal gradient is applied along a fluid-solid interface, the fluid experiences a thermo-osmotic force. In the steady state, this force is balanced by the gradient of the shear stress. Surprisingly, there appears to be no unique microscopic expression that can be used for computing the magnitude of the thermo-osmotic force. Here we report how, by treating the mass M of the fluid particles as a tensor in the Hamiltonian, we can eliminate the balancing shear force in a nonequilibrium simulation and therefore compute the thermo-osmotic force at simple solid-fluid interfaces. We compare the nonequilibrium force measurement with estimates of the thermo-osmotic force based on computing gradients of the stress tensor. We find that the thermo-osmotic force as measured in our simulations cannot be derived from the most common microscopic definitions of the stress tensor

    Computing the local pressure in molecular dynamics simulations

    Full text link
    Computer simulations of inhomogeneous soft matter systems often require accurate methods for computing the local pressure. We present a simple derivation, based on the virial relation, of two equivalent expressions for the local (atomistic) pressure in a molecular dynamics simulation. One of these expressions, previously derived by other authors via a different route, involves summation over interactions between particles within the region of interest; the other involves summation over interactions across the boundary of the region of interest. We illustrate our derivation using simulations of a simple osmotic system; both expressions produce accurate results even when the region of interest over which the pressure is measured is very small.Comment: 11 pages, 4 figure

    From a thin film model for passive suspensions towards the description of osmotic biofilm spreading

    Full text link
    Biofilms are ubiquitous macro-colonies of bacteria that develop at various interfaces (solid-liquid, solid-gas or liquid-gas). The formation of biofilms starts with the attachment of individual bacteria to an interface, where they proliferate and produce a slimy polymeric matrix - two processes that result in colony growth and spreading. Recent experiments on the growth of biofilms on agar substrates under air have shown that for certain bacterial strains, the production of the extracellular matrix and the resulting osmotic influx of nutrient-rich water from the agar into the biofilm are more crucial for the spreading behaviour of a biofilm than the motility of individual bacteria. We present a model which describes the biofilm evolution and the advancing biofilm edge for this spreading mechanism. The model is based on a gradient dynamics formulation for thin films of biologically passive liquid mixtures and suspensions, supplemented by bioactive processes which play a decisive role in the osmotic spreading of biofilms. It explicitly includes the wetting properties of the biofilm on the agar substrate via a disjoining pressure and can therefore give insight into the interplay between passive surface forces and bioactive growth processes

    Water activity in lamellar stacks of lipid bilayers: "Hydration forces" revisited

    Full text link
    Water activity and its relationship with interactions stabilising lamellar stacks of mixed lipid bilayers in their fluid state are investigated by means of osmotic pressure measurements coupled with small-angle x-ray scattering. The (electrically-neutral) bilayers are composed of a mixture in various proportions of lecithin, a zwitterionic phospholipid, and Simulsol, a non-ionic cosurfactant with an ethoxylated polar head. For highly dehydrated samples the osmotic pressure profile always exhibits the "classical" exponential decay as hydration increases but, depending on Simulsol to lecithin ratio, it becomes either of the "bound" or "unbound" types for more water-swollen systems. A simple thermodynamic model is used for interpreting the results without resorting to the celebrated but elusive "hydration forces"Comment: 24 pages, 12 figures. Accepted for publication in The European Physical Journal

    Theory and simulations of rigid polyelectrolytes

    Full text link
    We present theoretical and numerical studies on stiff, linear polyelectrolytes within the framework of the cell model. We first review analytical results obtained on a mean-field Poisson-Boltzmann level, and then use molecular dynamics simulations to show, under which circumstances these fail quantitatively and qualitatively. For the hexagonally packed nematic phase of the polyelectrolytes we compute the osmotic coefficient as a function of density. In the presence of multivalent counterions it can become negative, leading to effective attractions. We show that this results from a reduced contribution of the virial part to the pressure. We compute the osmotic coefficient and ionic distribution functions from Poisson-Boltzmann theory with and without a recently proposed correlation correction, and also simulation results for the case of poly(para-phenylene) and compare it to recently obtained experimental data on this stiff polyelectrolyte. We also investigate ion-ion correlations in the strong coupling regime, and compare them to predictions of the recently advocated Wigner crystal theories.Comment: 32 pages, 15 figures, proceedings of the ASTATPHYS-MEX-2001, to be published in Mol. Phy
    • …
    corecore