1,433 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Mobile Personal Healthcare System for Non-Invasive, Pervasive and Continuous Blood Pressure Monitoring: A Feasibility Study

    Get PDF
    Background: Smartphone-based blood pressure (BP) monitor using photoplethysmogram (PPG) technology has emerged as a promising approach to empower users with self-monitoring for effective diagnosis and control ofhypertension (HT). Objective: This study aimed to develop a mobile personal healthcare system for non-invasive, pervasive, and continuous estimation of BP level and variability to be user-friendly to elderly. Methods: The proposed approach was integrated by a self-designed cuffless, calibration-free, wireless and wearable PPG-only sensor, and a native purposely-designed smartphone application using multilayer perceptron machine learning techniques from raw signals. We performed a pilot study with three elder adults (mean age 61.3 ยฑ 1.5 years; 66% women) to test usability and accuracy of the smartphone-based BP monitor. Results: The employed artificial neural network (ANN) model performed with high accuracy in terms of predicting the reference BP values of our validation sample (n=150). On average, our approach predicted BP measures with accuracy \u3e90% and correlations \u3e0.90 (P \u3c .0001). Bland-Altman plots showed that most of the errors for BP prediction were less than 10 mmHg. Conclusions: With further development and validation, the proposed system could provide a cost-effective strategy to improve the quality and coverage of healthcare, particularly in rural zones, areas lacking physicians, and solitary elderly populations

    A Novel Deep Learning based Automatic Auscultatory Method to Measure Blood Pressure

    Get PDF
    Background: It is clinically important to develop innovative techniques that can accurately measure blood pressures (BP) automatically. Objectives: This study aimed to present and evaluate a novel automatic BP measurement method based on deep learning method, and to confirm the effects on measured BPs of the position and contact pressure of stethoscope. Methods: 30 healthy subjects were recruited. 9 BP measurements (from three different stethoscope contact pressures and three repeats) were performed on each subject. The convolutional neural network (CNN) was designed and trained to identify the Korotkoff sounds at a beat-by-beat level. Next, a mapping algorithm was developed to relate the identified Korotkoff beats to the corresponding cuff pressures for systolic and diastolic BP (SBP and DBP) determinations. Its performance was evaluated by investigating the effects of the position and contact pressure of stethoscope on measured BPs in comparison with reference manual auscultatory method. Results: The overall measurement errors of the proposed method were 1.4โ€‰ยฑโ€‰2.4โ€‰mmHg for SBP and 3.3โ€‰ยฑโ€‰2.9โ€‰mmHg for DBP from all the measurements. In addition, the method demonstrated that there were small SBP differences between the 2 stethoscope positions, respectively at the 3 stethoscope contact pressures, and that DBP from the stethoscope under the cuff was significantly lower than that from outside the cuff by 2.0โ€‰mmHg (Pโ€‰<โ€‰0.01). Conclusion: Our findings suggested that the deep learning based method was an effective technique to measure BP, and could be developed further to replace the current oscillometric based automatic blood pressure measurement method

    Blood Pressure Estimation from Electrocardiogram and Photoplethysmography Signals Using Continuous Wavelet Transform and Convolutional Neural Network

    Get PDF
    Cuff-less and continuous blood pressure (BP) measurement has recently become an active research area in the field of remote healthcare monitoring. There is a growing demand for automated BP estimation and monitoring for various long-term and chronic conditions. Automated BP monitoring can produce a good amount of rich health data, which increases the chance of early diagnosis and treatments that are critical for a long-term condition such as hypertension and Cardiovascular diseases (CVDs). However, mining and processing this vast amount of data is challenging, which is aimed to address in this research. We employed a continuous wavelet transform (CWT) and a deep convolutional neural network (CNN) to estimate the BP. The electrocardiogram (ECG), photoplethysmography (PPG) and arterial blood pressure (ABP) signals were extracted from the online Medical Information Mart for Intensive Care (MIMIC III) database. The scalogram of each signal was created and used for training and testing our proposed CNN model that can implicitly learn to extract the descriptive features from the training data. This study achieved a promising BP estimation approach has been achieved without employing engineered feature extraction that is comparable with previous works. Experimental results demonstrated a low root mean squere error (RMSE) rate of 3.36 mmHg and a high accuracy of 86.3% for BP estimations. The proposed CNN-based model can be considered as a reliable and feasible approach to estimate BP for continuous remote healthcare monitoring

    ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ˜ˆ์•• ์˜ˆ์ธก ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์œค์„ฑ๋กœ.While COVID-19 is changing the world's social profile, it is expected that the telemedicine sector, which has not been activated due to low regulation and reliability, will also undergo a major change. As COVID-19 spreads in the United States, the US Department of Health \& Human Services temporarily loosens the standards for telemedicine, while enabling telemedicine using Facebook, Facebook Messenger-based video chat, Hangouts, and Skype. The expansion of the telemedicine market is expected to quickly transform the existing treatment-oriented hospital-led medical market into a digital healthcare service market focused on prevention and management through wearables, big data, and health records analysis. In this prevention and management-oriented digital healthcare service, it is very important to develop a technology that can easily monitor a person's health status. One of the vital signs that can be used for personal health monitoring is blood pressure. High BP is a common and dangerous condition. About 1 out of 3 adults in the U.S. (about 75 million people) have high BP. This common condition increases the risk of heart disease and stroke, two of the leading causes of death for Americans. High BP is called the silent killer because it often has no warning signs or symptoms, and many people are not aware they have it. For these reasons, it is important to develop a technology that can easily and conveniently check BP regularly. In biomedical data analysis, various studies are being attempted to effectively analyze by applying machine learning to biomedical big data accumulated in large quantities. However, collecting blood pressure-related data at the level of big data is very difficult and very expensive because it takes a lot of manpower and time. So in this dissertation, we proposed a three-step strategy to overcome these issues. First, we describe a BP prediction model with extraction and concentration CNN architecture, to process publicly disclosed sequential ECG and PPG dataset. Second, we evaluate the performance of the developed model by applying the developed model to privately measured data. To address the third issue, we propose the knowledge distillation method and input pre-processing method to improve the accuracy of the blood pressure prediction model. All the methods proposed in this dissertation are based on a deep convolutional neural network (CNN). Unlike other studies based on manual recognition of the features, by utilizing the advantage of deep learning which automatically extracts features, raw biomedical signals are used intact to reflect the inherent characteristics of the signals themselves.์ฝ”๋กœ๋‚˜ 19์— ์˜ํ•œ ์ „ ์„ธ๊ณ„์˜ ์‚ฌํšŒ์  ํ”„๋กœํ•„ ๋ณ€ํ™”๋กœ, ๊ทœ์ œ์™€ ์‹ ๋ขฐ์„ฑ์ด ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ์— ํ™œ์„ฑํ™” ๋˜์ง€ ์•Š์€ ์›๊ฒฉ ์˜๋ฃŒ ๋ถ„์•ผ๋„ ํฐ ๋ณ€ํ™”๋ฅผ ๊ฒช์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ฝ”๋กœ๋‚˜ 19๊ฐ€ ๋ฏธ๊ตญ์— ํผ์ง์— ๋”ฐ๋ผ ๋ฏธ๊ตญ ๋ณด๊ฑด๋ณต์ง€๋ถ€๋Š” ์›๊ฒฉ ์ง„๋ฃŒ์˜ ํ‘œ์ค€์„ ์ผ์‹œ์ ์œผ๋กœ ์™„ํ™”ํ•˜๋ฉด์„œ ํŽ˜์ด์Šค๋ถ, ํŽ˜์ด์Šค๋ถ ๋ฉ”์‹ ์ € ๊ธฐ๋ฐ˜ ํ™”์ƒ ์ฑ„ํŒ…, ํ–‰์•„์›ƒ, ์Šค์นด์ดํ”„๋ฅผ ์‚ฌ์šฉํ•œ ์›๊ฒฉ ์ง„๋ฃŒ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์›๊ฒฉ์˜๋ฃŒ ์‹œ์žฅ์˜ ํ™•์žฅ์€ ๊ธฐ์กด์˜ ์น˜๋ฃŒ์ค‘์‹ฌ ๋ณ‘์›์ฃผ๋„์˜ ์˜๋ฃŒ์‹œ์žฅ์„ ์›จ์–ด๋Ÿฌ๋ธ”, ๋น… ๋ฐ์ดํ„ฐ ๋ฐ ๊ฑด๊ฐ•๊ธฐ๋ก ๋ถ„์„์„ ํ†ตํ•œ ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ์— ์ค‘์ ์„ ๋‘” ๋””์ง€ํ„ธ ์˜๋ฃŒ ์„œ๋น„์Šค ์‹œ์žฅ์œผ๋กœ ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”์‹œํ‚ฌ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ ์ค‘์‹ฌ์˜ ๋””์ง€ํ„ธ ํ—ฌ์Šค์ผ€์–ด ์„œ๋น„์Šค์—์„œ๋Š” ์‚ฌ๋žŒ์˜ ๊ฑด๊ฐ• ์ƒํƒœ๋ฅผ ์‰ฝ๊ฒŒ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•œ๋ฐ ํ˜ˆ์••์€ ๊ฐœ์ธ ๊ฑด๊ฐ• ๋ชจ๋‹ˆํ„ฐ๋ง์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ•„์ˆ˜ ์ง•ํ›„ ์ค‘ ํ•˜๋‚˜ ์ž…๋‹ˆ๋‹ค. ๊ณ ํ˜ˆ์••์€ ์•„์ฃผ ํ”ํ•˜๊ณ  ์œ„ํ—˜ํ•œ ์งˆํ™˜์ž…๋‹ˆ๋‹ค. ๋ฏธ๊ตญ ์„ฑ์ธ 3๋ช…์ค‘ 1๋ช…(์•ฝ 7,500๋งŒ๋ช…)์ด ๊ณ ํ˜ˆ์••์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฏธ๊ตญ์ธ์˜ ์ฃผ์š” ์‚ฌ๋ง ์›์ธ ์ค‘ ๋‘๊ฐ€์ง€์ธ ์‹ฌ์žฅ์งˆํ™˜๊ณผ ๋‡Œ์กธ์ค‘์˜ ์œ„ํ—˜์„ ์ฆ๊ฐ€ ์‹œํ‚ต๋‹ˆ๋‹ค. ๊ณ ํ˜ˆ์••์€ ์‹ ์ฒด์— ๊ฒฝ๊ณ  ์‹ ํ˜ธ๋‚˜ ์ž๊ฐ ์ฆ์ƒ์ด ์—†์–ด ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์ž์‹ ์ด ๊ณ ํ˜ˆ์••์ธ ๊ฒƒ์„ ์ธ์ง€ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— "์‚ฌ์ผ๋ŸฐํŠธ ํ‚ฌ๋Ÿฌ"๋ผ ๋ถˆ๋ฆฌ์›๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ์ •๊ธฐ์ ์œผ๋กœ ์‰ฝ๊ณ  ํŽธ๋ฆฌํ•˜๊ฒŒ ํ˜ˆ์••์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ƒ์ฒด์˜ํ•™ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ถ„์•ผ์—์„œ๋Š” ๋จธ์‹  ๋Ÿฌ๋‹์„ ๋Œ€๋Ÿ‰์œผ๋กœ ์ˆ˜์ง‘๋œ ์ƒ์ฒด์˜ํ•™ ๋น… ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๋Š” ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํšจ๊ณผ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น… ๋ฐ์ดํ„ฐ ์ˆ˜์ค€์œผ๋กœ ๋‹ค๋Ÿ‰์˜ ํ˜ˆ์•• ๊ด€๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๊ฒƒ์€ ๋งŽ์€ ์ „๋ฌธ์ ์ธ ์ธ๋ ฅ๋“ค์ด ์˜ค๋žœ์‹œ๊ฐ„์„ ํ•„์š”๋กœ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋งค์šฐ ์–ด๋ ต๊ณ  ๋น„์šฉ ๋˜ํ•œ ๋งŽ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ 3๋‹จ๊ณ„ ์ „๋žต์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๋จผ์ € ๋ˆ„๊ตฌ๋‚˜ ์‹œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ณต๊ฐœ๋˜์–ด ์žˆ๋Š” ์‹ฌ์ „๋„, ๊ด‘์šฉ์ ๋งฅํŒŒ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉ, ์ˆœ์ฐจ์ ์ธ ์‹ฌ์ „๋„, ๊ด‘์šฉ์ ๋งฅํŒŒ ์‹ ํ˜ธ์—์„œ ํ˜ˆ์••์„ ์ž˜ ์˜ˆ์ธกํ•˜๋„๋ก ๊ณ ์•ˆ๋œ ์ถ”์ถœ ๋ฐ ๋†์ถ• ์ž‘์—…์„ ๋ฐ˜๋ณตํ•˜๋Š” ํ•จ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ ์ œ์•ˆ๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ๊ฐœ์ธ์—๊ฒŒ์„œ ์ธก์ •ํ•œ ๊ด‘์šฉ์ ๋งฅํŒŒ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•ด ์ œ์•ˆ๋œ ํ•จ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ ํ˜ˆ์••์˜ˆ์ธก ๋ชจ๋ธ์˜ ์ •ํ™•์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ง€์‹ ์ฆ๋ฅ˜๋ฒ•๊ณผ ์ž…๋ ฅ์‹ ํ˜ธ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๋ชจ๋“  ํ˜ˆ์••์˜ˆ์ธก ๋ฐฉ๋ฒ•์€ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ํ˜ˆ์•• ์˜ˆ์ธก์— ํ•„์š”ํ•œ ํŠน์ง•๋“ค์„ ์ˆ˜๋™์œผ๋กœ ์ถ”์ถœํ•ด์•ผ ํ•˜๋Š” ๋‹ค๋ฅธ ์—ฐ๊ตฌ๋“ค๊ณผ ๋‹ค๋ฅด๊ฒŒ ํŠน์ง•์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹์˜ ์žฅ์ ์„ ํ™œ์šฉ, ์•„๋ฌด๋Ÿฐ ์ฒ˜๋ฆฌ๋„ ํ•˜์ง€ ์•Š์€ ์›๋ž˜ ๊ทธ๋Œ€๋กœ์˜ ์ƒ์ฒด ์‹ ํ˜ธ์—์„œ ์‹ ํ˜ธ ์ž์ฒด์˜ ๊ณ ์œ ํ•œ ํŠน์ง•์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.1 Introduction 1 2 Background 5 2.1 Cuff-based BP measurement methods 9 2.1.1 Auscultatory method 9 2.1.2 Oscillometric method 10 2.1.3 Tonometric method 11 2.2 Biomedical signals used in cuffless BP prediction methods 13 2.2.1 Electrocardiography (ECG) 13 2.2.2 Photoplethysmography (PPG) 20 2.3 Cuffless BP measurement methods 21 2.3.1 PWV based BP prediction methods 25 2.3.2 Machine learning based pulse wave analysis methods 26 2.4 Deep learning for sequential biomedical data 30 2.4.1 Convolutional neural networks 31 2.4.2 Recurrent neural networks 32 3 End-to-end blood pressure prediction via fully convolutional networks 33 3.1 Introduction 35 3.2 Method 38 3.2.1 Data preparation 38 3.2.2 CNN based prediction model 41 3.2.3 Detailed architecture 45 3.3 Experimental results 47 3.3.1 Setup 47 3.3.2 Model evaluation & selection 48 3.3.3 Calibration-based method 51 3.3.4 Performance comparison 52 3.3.5 Verification using international standards for BP measurement grading criteria 54 3.3.6 Performance comparison by the input signal combinations 56 3.3.7 An ablation study of each architectural component of extraction-concentration blocks 58 3.3.8 Preprocessing of input signal to improve blood pressure prediction performance 59 3.4 Discussion 61 3.5 Summary 63 4 Blood pressure prediction by a smartphone sensor using fully convolutional networks 64 4.1 Introduction 66 4.2 Method 69 4.2.1 Data acquisition 71 4.2.2 Preprocessing of the PPG signals 71 4.2.3 PPG signal selection 71 4.2.4 Data preparation for CNN model training 72 4.2.5 Network architectures 72 4.3 Experimental results 75 4.3.1 Implementation details 75 4.3.2 Effect of PPG combination on BP prediction 75 4.3.3 Performance comparison with other related works 76 4.3.4 Verification using international standards for BP measurement grading criteria 77 4.3.5 Preprocessing of input signal to improve blood pressure prediction performance 79 4.4 Discussion 81 4.5 Summary 83 5 Improving accuracy of blood pressure prediction by distilling the knowledge of neural networks 84 5.1 Introduction 85 5.2 Methods 87 5.3 Experimental results 88 5.4 Discussion & Summary 89 6 Conclusion 90 6.1 Future work 92 Bibliography 93 Abstract (In Korean) 106Docto

    Enhanced model-based assessment of the hemodynamic status by noninvasive multi-modal sensing

    Get PDF

    Physics-informed neural networks for blood flow inverse problems

    Full text link
    Physics-informed neural networks (PINNs) have emerged as a powerful tool for solving inverse problems, especially in cases where no complete information about the system is known and scatter measurements are available. This is especially useful in hemodynamics since the boundary information is often difficult to model, and high-quality blood flow measurements are generally hard to obtain. In this work, we use the PINNs methodology for estimating reduced-order model parameters and the full velocity field from scatter 2D noisy measurements in the ascending aorta. The results show stable and accurate parameter estimations when using the method with simulated data, while the velocity reconstruction shows dependence on the measurement quality and the flow pattern complexity. The method allows for solving clinical-relevant inverse problems in hemodynamics and complex coupled physical systems
    • โ€ฆ
    corecore