489 research outputs found

    Evidence for complex integration and dynamic neural regulation of skeletal muscle recruitment during exercise in humans

    Get PDF
    A model is proposed in which the development of physical exhaustion is a relative rather than an absolute event and the sensation of fatigue is the sensory representation of the underlying neural integrative processes. Furthermore, activity is controlled as part of a pacing strategy involving active neural calculations in a “governor” region of the brain, which integrates internal sensory signals and information from the environment to produce a homoeostatically acceptable exercise intensity. The end point of the exercise bout is the controlling variable. This is an example of a complex, non-linear, dynamic system in which physiological systems interact to regulate activity before, during, and after the exercise bout

    Neural entrainment to continuous speech and language processing in the early years of life

    Get PDF
    This thesis aimed to explore the neural mechanisms of language processing in infants under 12 months of age by using EEG measures of speech processing. More specifically, I wanted to investigate if infants are able to engage in the auditory neural tracking of continuous speech and how this processing can be modulated by infant attention and different linguistic environments. Limited research has investigated this phenomenon of neural tracking in infants and the potential effects that this may have on later language development. Experiment 1 set the groundwork for the thesis by establishing a reliable method to measure cortical entrainment by 36 infants to the amplitude envelope of continuous speech. The results demonstrated that infants have entrainment to speech much like has been found in adults. Additionally, infants show a reliable elicitation of the Acoustic Change Complex (ACC). Follow up language assessments were conducted with these infants approximately two years later; however, no significant predictors of coherence on later language outcomes were found. The aim of Experiment 2 was to discover how neural entrainment can be modulated by infant attention. Twenty infants were measured on their ability to selectively attend to a target speaker while in the presence of a distractor of matching acoustic intensity. Coherence values were found for the target, the distractor and for the dual signal (both target and distractor together). Thus, it seems that infant attention may be fluctuating between the two speech signals leading to them entraining to both simultaneously. However, the results were not clear. Thus, Experiment 3 expanded on from Experiment 2. However, now EEG was recorded from 30 infants who listened to speech with no acoustic interference and speech-in-noise with a signal-to-noise ratio of 10dB. Additionally, it was investigated whether bilingualism has any potential effects on this process. Similar coherence values were observed when infants listened to speech in both conditions (quiet and noise), suggesting that infants successfully inhibited the disruptive effects of the masker. No effects of bilingualism on neural entrainment were present. For the fourth study we wanted to continue investigating infant auditory-neural entrainment when exposed to more varying levels of background noise. However, due to the COVID-19 pandemic all testing was moved online. Thus, for Experiment 4 we developed a piece of online software (the memory card game) that could be used remotely. Seventy three children ranging from 4 to 12 years old participated in the online experiment in order to explore how the demands of a speech recognition task interact with masker type and language and how this changes with age during childhood. Results showed that performance on the memory card game improved with age but was not affected by masker type or language background. This improvement with age is most likely a result of improved speech perception capabilities. Overall, this thesis provides a reliable methodology for measuring neural entrainment in infants and a greater understanding of the mechanisms of speech processing in infancy and beyond

    Perfiles de actividad magnética cerebral de jóvenes con consumo intensivo de alcohol

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Psicología, leída el 24-01-2017El patrón de consumo de alcohol binge drinking se caracteriza por la ingesta intermitente de grandes cantidades del alcohol en un corto espacio de tiempo alternándose con periodos de abstinencia. En España, este tipo de consumo de alcohol se asocia al conocido efecto botellón en el que los jóvenes se reúnen en espacios públicos, principalmente los fines de semana, teniendo el alcohol como protagonista. La adolescencia, edad en la que se inicia este tipo de consumo, es considerada un periodo crítico de desarrollo en el que el cerebro experimenta grandes cambios madurativos, fundamentalmente en los lóbulos frontales. Dada su inmadurez, el cerebro adolescente muestra mayor vulnerabilidad ante el efecto neurotóxico del alcohol que el cerebro adulto. Debido a la alta prevalencia que este tipo de consumo presenta entre los jóvenes, la comunidad científica ha mostrado interés en las últimas décadas por estudiar las posibles consecuencias que puede tener en la estructura y funcionamiento del cerebro de jóvenes que beben de este modo. Sin embargo, hasta el momento no existían estudios que evaluasen el efecto del binge drinking en la actividad magnética cerebral. La Magnetoencefalografía es una técnica no invasiva que mide las corrientes magnéticas generadas por las pequeñas corrientes neurales que producen las neuronas. La presente tesis ha utilizado esta técnica a lo largo de los tres experimentos en los que se estudió: 1) la actividad magnética cerebral en el espacio de los sensores asociada del estado de reposo de jóvenes universitarios de 18-19 años con el patrón binge drinking y un grupo control, 2) la actividad magnética cerebral en espacio de las fuentes del estado de reposo y la conectividad estructural de los mismos jóvenes dos años más tarde, con 20-21 años; y 3) la actividad magnética cerebral en espacio de las fuentes asociada a una tarea Go/NoGo de los mismos jóvenes durante la primera fase del estudio, cuando tenían 18-19 años...The alcohol consumption binge drinking pattern is characterized by intermittent intake of large amounts of alcohol in a short space of time, alternated with periods of abstinence. In Spain, this type of alcohol consumption is associated with the well-known “efecto botellón” where young people gather in public spaces, especially on weekends, having the alcohol as the protagonist. Adolescence, the age in which this type of consumption begins, is considered a critical period of neural development in which the brain undergoes maturational changes, mainly in the frontal lobes. Given its immaturity, adolescent brain is more vulnerable to the neurotoxic effects of alcohol than the adult brain. Because of its high prevalence among young adolescents, since last decades the scientific community has shown increasing interest to study the possible consequences that binge drinking may have on the structure and functioning of the brain. However, so far there are no studies assessing the effect of binge drinking with Magnetoencephalography. Magnetoencephalography is a noninvasive technique that measures the magnetic currents generated by neural currents produced by pyramidal neurons. The present dissertation has used this technique over the three experiments, studying: 1) brain magnetic activity in the sensor space associated to resting state of university students of aged 18-19 years old with alcohol binge drinking pattern and also a control group, 2) brain magnetic activity in the source space also associated to resting state and structural connectivity of the same young students two years later, with 20-21 years old; and finally, 3) the brain magnetic activity in source space associated with a Go/NoGo task in the first phase of the study, when the participants were 18-19...Fac. de PsicologíaTRUEunpu

    AI of Brain and Cognitive Sciences: From the Perspective of First Principles

    Full text link
    Nowadays, we have witnessed the great success of AI in various applications, including image classification, game playing, protein structure analysis, language translation, and content generation. Despite these powerful applications, there are still many tasks in our daily life that are rather simple to humans but pose great challenges to AI. These include image and language understanding, few-shot learning, abstract concepts, and low-energy cost computing. Thus, learning from the brain is still a promising way that can shed light on the development of next-generation AI. The brain is arguably the only known intelligent machine in the universe, which is the product of evolution for animals surviving in the natural environment. At the behavior level, psychology and cognitive sciences have demonstrated that human and animal brains can execute very intelligent high-level cognitive functions. At the structure level, cognitive and computational neurosciences have unveiled that the brain has extremely complicated but elegant network forms to support its functions. Over years, people are gathering knowledge about the structure and functions of the brain, and this process is accelerating recently along with the initiation of giant brain projects worldwide. Here, we argue that the general principles of brain functions are the most valuable things to inspire the development of AI. These general principles are the standard rules of the brain extracting, representing, manipulating, and retrieving information, and here we call them the first principles of the brain. This paper collects six such first principles. They are attractor network, criticality, random network, sparse coding, relational memory, and perceptual learning. On each topic, we review its biological background, fundamental property, potential application to AI, and future development.Comment: 59 pages, 5 figures, review articl

    State-dependent modulation of cortico-spinal networks

    Get PDF
    Beta-band rhythm (13-30 Hz) is a dominant oscillatory activity in the sensorimotor system. Numerous studies reported on links between motor performance and the cortical and cortico-spinal beta rhythm. However, these studies report divergent beta-band frequencies and are, additionally, based on differently performed motor-tasks (e.g., motor imagination, muscle contraction, reach, grasp, and attention). This diversity blurs the role of beta in the sensorimotor system. It consequently challenges the development of beta-band activity-dependent stimulation protocols in the sensorimotor system. In this vein, we studied the functional role of beta-band cortico-cortical and cortico-spinal networks during a motor learning task. We studied how the contribution of cortical and spinal beta changes in the course of learning, and how this modulation is affected by afferent feedback to the sensorimotor system. We furthermore researched the relationship to motor performance. Consider that we made our study in the absence of any residual movement to allow our findings to be translated into rehabilitation programs for severely affected stroke patients. This thesis, at first, investigates evoked responses after transcranial magnetic stimulation (TMS). This revealed two different beta-band networks, i.e., in the low and high beta-band reflecting cortical and cortico-spinal activity. We, then, used a broader frequency range in the beta-band to trigger passive opening of the hand (peripheral feedback) or cortical stimulation (cortical feedback). While a unilateral hemispheric increase in cortico-spinal synchronization was observed in the group with peripheral feedback, a bilateral hemispheric increase in cortico-cortical and cortico-spinal synchronization was observed for the group with cortical feedback. An improvement in motor performance was found in the peripheral group only. Additionally, an enhancement in the directed cortico-spinal synchronization from cortex to periphery was observed for the peripheral group. Similar neurophysiological and behavioral changes were observed for stroke patients receiving peripheral feedback. The results 6 suggest two different mechanisms for beta-band activity-dependent protocols depending on the feedback modality. While the peripheral feedback appears to increase the synchronization among neural groups, cortical stimulation appears to recruit dormant neurons and to extend the involved motor network. These findings may provide insights regarding the mechanism behind novel activity-dependent protocols. It also highlights the importance of afferent feedback for motor restoration in beta-band activity-dependent rehabilitation programs

    Neural Network Dynamics of Visual Processing in the Higher-Order Visual System

    Get PDF
    Vision is one of the most important human senses that facilitate rich interaction with the external environment. For example, optimal spatial localization and subsequent motor contact with a specific physical object amongst others requires a combination of visual attention, discrimination, and sensory-motor coordination. The mammalian brain has evolved to elegantly solve this problem of transforming visual input into an efficient motor output to interact with an object of interest. The frontal and parietal cortices are two higher-order (i.e. processes information beyond simple sensory transformations) brain areas that are intimately involved in assessing how an animal’s internal state or prior experiences should influence cognitive-behavioral output. It is well known that activity within each region and functional interactions between both regions are correlated with visual attention, decision-making, and memory performance. Therefore, it is not surprising that impairment in the fronto-parietal circuit is often observed in many psychiatric disorders. Network- and circuit-level fronto-parietal involvement in sensory-based behavior is well studied; however, comparatively less is known about how single neuron activity in each of these areas can give rise to such macroscopic activity. The goal of the studies in this dissertation is to address this gap in knowledge through simultaneous recordings of cellular and population activity during sensory processing and behavioral paradigms. Together, the combined narrative builds on several themes in neuroscience: variability of single cell function, population-level encoding of stimulus properties, and state and context-dependent neural dynamics.Doctor of Philosoph

    On the role of neuronal oscillations in auditory cortical processing

    Full text link
    Although it has been over 100 years since William James stated that everyone knows what attention is , its underlying neural mechanisms are still being debated today. The goal of this research was to describe the physiological mechanisms of auditory attention using direct electrophysiological recordings in macaque primary auditory cortex (A1). A major focus of my research was on the role ongoing neuronal oscillations play in attentional modulation of auditory responses in A1. For all studies, laminar profiles of synaptic activity, (indexed by current source density analysis) and concomitant firing patterns in local neurons (multiunit activity) were acquired simultaneously via linear array multielectrodes positioned in A1. The initial study of this dissertation examined the contribution of ongoing oscillatory activity to excitatory and inhibitory responses in A1 in passive (no task) conditions. Next, the function of ongoing oscillations in modulating the frequency tuning of A1 during an intermodal selective attention oddball task was investigated. The last study was aimed at establishing whether there is a hemispheric asymmetry in the way neuronal oscillations are utilized by attention, corresponding to that noted in humans. The results of the first study indicate that in passive conditions, ongoing oscillations reset by stimulus related inputs modulate both excitatory and inhibitory components of local neuronal ensemble responses in A1. The second set of experiments demonstrates that this mechanism is utilized by attention to modulate and sharpen frequency tuning. Finally, we show that as in humans, there appears to be a specialization of left A1 for temporal processing, as signified by greater temporal precision of neuronal oscillatory alignment. Taken together these results underline the importance of neuronal oscillations in perceptual processes, and the validity of the macaque monkey as a model of human auditory processing

    A Physiological Signal Processing System for Optimal Engagement and Attention Detection.

    Get PDF
    In today’s high paced, hi-tech and high stress environment, with extended work hours, long to-do lists and neglected personal health, sleep deprivation has become common in modern culture. Coupled with these factors is the inherent repetitious and tedious nature of certain occupations and daily routines, which all add up to an undesirable fluctuation in individuals’ cognitive attention and capacity. Given certain critical professions, a momentary or prolonged lapse in attention level can be catastrophic and sometimes deadly. This research proposes to develop a real-time monitoring system which uses fundamental physiological signals such as the Electrocardiograph (ECG), to analyze and predict the presence or lack of cognitive attention in individuals during task execution. The primary focus of this study is to identify the correlation between fluctuating level of attention and its implications on the physiological parameters of the body. The system is designed using only those physiological signals that can be collected easily with small, wearable, portable and non-invasive monitors and thereby being able to predict well in advance, an individual’s potential loss of attention and ingression of sleepiness. Several advanced signal processing techniques have been implemented and investigated to derive multiple clandestine and informative features. These features are then applied to machine learning algorithms to produce classification models that are capable of differentiating between the cases of a person being attentive and the person not being attentive. Furthermore, Electroencephalograph (EEG) signals are also analyzed and classified for use as a benchmark for comparison with ECG analysis. For the study, ECG signals and EEG signals of volunteer subjects are acquired in a controlled experiment. The experiment is designed to inculcate and sustain cognitive attention for a period of time following which an attempt is made to reduce cognitive attention of volunteer subjects. The data acquired during the experiment is decomposed and analyzed for feature extraction and classification. The presented results show that to a fairly reasonable accuracy it is possible to detect the presence or lack of attention in individuals with just their ECG signal, especially in comparison with analysis done on EEG signals. The continual work of this research includes other physiological signals such as Galvanic Skin Response, Heat Flux, Skin Temperature and video based facial feature analysis

    Influence of beta and theta binaural beat stimulation on episodic memory: an EEG study

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Sinais e Imagens Médicas) Universidade de Lisboa, Faculdade de Ciências, 2021Binaural beats (BBs) are auditory illusions created by the brain when two coherent sounds with slightly different frequencies are presented to both ears dichotically. For example, if the subject is presented a 256 Hz tone to the right ear and a 250 Hz to the left ear, the beat in this phenomenon is referred to as a 6 Hz theta binaural beat. Conversely, a mix of two sinusoids presented to the same ear is called acoustic beat (AB), resulting in a periodic amplitude fluctuation. Although BBs were shown to have positive effects on cognition, there are no sufficient studies on BBs and episodic memory. Furthermore, there is no agreement to explain the brain mechanism underlying the perception of BBs. The primary goal of this study is to investigate the influence of BBs on episodic memory and the effects of BB stimulation on brain rhythms, more concretely to examine whether they can change the power of specific EEG frequencies, comparatively to ABs. The secondary objective focuses on an exploratory study to measure cortical auditory evoked potentials (CAEPs) applying Muse, a consumer-grade EEG device used in this study, in order to assess its potential and the corresponding data quality. To meet the goals, two separate experiments were designed: a classic CAEP paradigm, with a total of 5 participants (3 male, 2 female; aged 22-25 years old); and an experiment with 32 subjects (19 male, 13 female; aged 20-28 years old), divided into two groups (depending on type of stimulation performed: 20 Hz beta or 6 Hz theta beats), each one with two stimuli conditions (BB or AB), received 15 minutes before the episodic memory task, during memory encoding phase and during the free recall test, across 2 sessions with an interval of 1 week. To quantify the power of brain oscillations during AB and BB stimulation, time-frequency analysis was performed using Discrete Wavelet Transform (DWT) and Relative Wavelet Energy (RWE). Regarding CAEP paradigm, N1-P2 complex was detected in temporal regions with acceptable signal-to-noise ratio. Parametric and non-parametric paired t-tests showed several significant changes in RWE values within each group at different time points, frequency bands and channels during both sessions, between BB and AB conditions. Moreover, entrainment of brain activity with the frequency of the beat was detected within theta BB stimulation. Regarding the effects of BB stimulation on episodic memory performance, t-tests revealed significant differences in the memory scores between AB and BB conditions during the first session (t=−2.48, p=0.0133) and second session (t=−2.67, p=0.00914) in theta group, with higher scores observed after BB stimulation. In beta group, significant differences in the scores were observed between AB and BB conditions during first session (t=−2.40, p=0.0154), with higher scores registered in BB condition. Inter-group analysis demonstrated that beta group outperformed theta group in both AB (t=3.37, p=0.00244) and BB (t=3.58, p=0.00143) conditions during the second session. This study validates the use of Muse for neuroscientific research, demonstrating that is possible to rely on consumer-grade low-cost EEG systems. Furthermore, it demonstrates that 20 Hz beta and 6 Hz theta BBs have a positive influence on episodic memory performance. Based on findings of positive effects of BBs on cognition, these results were expected. Entrainment was observed during theta BB stimulation. In addition, it is suggested that BBs have a modulatory effect on brain frequencies, with involvement of dynamical processes.Batimentos binaurais (BBs, do inglês Binaural beats) são ilusões auditivas criadas pelo cérebro quando dois sons coerentes com frequências ligeiramente diferentes são apresentados dicoticamente, isto é, cada ouvido é estimulado por frequências diferentes. Existem diferentes tipos de BBs, dependendo das frequências a partir das quais são criados e da diferença entre elas, o que determina a frequência do batimento. Por exemplo, se o sujeito é apresentado com um tom de 256 Hz no ouvido direito e 250 Hz no ouvido esquerdo, cria-se um batimento binaural de 6 Hz, na frequência do ritmo teta. Por outro lado, a mistura de duas sinusoides apresentadas ao mesmo ouvido possui o nome de batimento acústico (AB, do inglês acoustic beat) e as suas interferências são refletidas em flutuações periódicas em amplitude. Estudos demonstram que os BBs têm um efeito positivo na memória de trabalho, memória de longo prazo, capacidade de atenção e nos níveis de ansiedade e relaxamento. No entanto, existem relatos do seu efeito negativo na atenção e na memória de curto prazo. Para além disso, não existe um consenso na comunidade científica para explicar o mecanismo cerebral subjacente à perceção dos BBs. Tudo isto sublinha a necessidade de mais unificação na pesquisa. Apesar do efeito benéfico dos BBs nos diferentes tipos de memória, não existe um leque de estudos suficientemente grande relativamente à sua influência na memória episódica, um tipo de memória associado à codificação de eventos autobiográficos. Destaques na pesquisa sugerem que as oscilações teta estão associadas a um melhor desempenho na memória episódica. Presumindo que a estimulação auditiva com BBs teta possa ter um efeito modulador das frequências cerebrais por meio de resposta pós-frequência, mais especificamente no ritmo teta, é razoável supor que os BBs podem influenciar a memória episódica. O sistema de EEG usado neste estudo é o Muse, desenvolvido para ajudar em técnicas de meditação. Como não se trata de um aparelho de grau médico, é necessário entender se o material é viável para o estudo. O método para alcançar esta validação foi medir os potenciais evocados auditivos corticais, uma resposta cerebral já bem conhecida. Posto isto, a primeira parte desta tese foca-se num estudo exploratório para medir os potenciais evocados auditivos corticais usando o Muse, com o objetivo de avaliar o potencial do dispositivo e a qualidade dos dados correspondentes. A segunda parte e a meta principal deste estudo é investigar a influência do BBs na memória episódica e estudar o seu efeito nas oscilações cerebrais, em comparação com ABs. Para concretizar a primeira experiência deste estudo, um paradigma clássico foi desenhado para medir os potenciais evocados. Um total de 5 voluntários participaram neste estudo, com idades compreendidas entre 22 e 25 anos. Os participantes receberam um total de 180 estímulos, que consistiam em tons puros de 1000 Hz, com 500 ms de plateau, 10 ms de subida e descida e apresentados a cada 2 segundos. A aquisição do EEG e os marcadores de evento foram concretizados através do Lab Streaming Layer, uma ferramenta que permite criar redes de conexões entre vários dispositivos e programas. O pré-processamento e o processamento dos dados foram executados no EEGLAB, uma extensão do MATLAB que oferece uma interface gráfica para realizar a análise do EEG. Os resultados obtidos foram satisfatórios: o complexo N1-P2 foi identificado em todos os sujeitos e também nas curvas de grande média, com uma melhor relação entre o sinal e o ruído comparativamente às curvas individuais. Relativamente à segunda parte desta tese, a experiência consiste em 2 grupos de sujeitos, 2 blocos de tarefas, cada um com 2 condições de estímulo (AB ou BB), concretizada durante 2 sessões, separadas por uma semana. Um total de 32 voluntários foram recrutados, com idades compreendidas entre 20 e 28 anos. Os sujeitos foram divididos em 2 grupos: grupo teta, que recebeu estimulação com BBs e ABs teta na frequência dos 6 Hz, criados a partir de tons puros de 247 Hz e 253 Hz; grupo beta, que foi estimulado com BBs e ABs beta na frequência dos 20 Hz, gerados a partir de tons puros de 240 Hz e 260 Hz. A primeira parte do primeiro bloco consistia numa tarefa passiva em que os sujeitos de cada grupo ouviam ABs durante 15 minutos, ao mesmo tempo em que aquisição do EEG era realizada. Seguiu-se uma tarefa de memória episódica, em que os participantes tinham que decorar uma sequência de 30 imagens de objetos, cada uma com a duração de 3 segundos. De seguida, uma tarefa de distração foi realizada consistindo numa contagem em voz alta de 20 até 0. Por fim, foi feito um teste de recordação livre em que os sujeitos apontavam num papel os objetos que se lembravam de ver, cujo número seria contabilizado como pontuações de memória. O segundo bloco de tarefas é idêntico ao primeiro, exceto que imagens de objetos diferentes foram usadas e a estimulação durante os 15 minutos iniciais foi feita com BBs. Na segunda sessão, os mesmos procedimentos foram repetidos, exceto o uso de imagens de objetos diferentes em cada bloco. Para quantificar a energia de cada banda de frequência do EEG, recorreu-se à Transformada de Wavelet Discreta, que decompõe o sinal em vários níveis, cada um correspondendo a uma banda de frequência de ritmos cerebrais, e à Energia de Wavelet Relativa (RWE, de Relative Wavelet Energy). Mudanças na RWE dum determinado nível de decomposição refletem mudanças na atividade cerebral na banda de frequências correspondente. Dois tipos de análise foram concretizados: um tendo conta a evolução temporal da RWE ao longo de 13 segmentos de 1 minuto; o segundo implicou calcular a RWE média ao longo de um único segmento de EEG, colapsando a dimensão temporal. Os testes t paramétricos e não paramétricos revelaram várias diferenças entre os valores de RWE durante a estimulação com ABs e a estimulação com BBs, ao longo de diferentes instantes de tempo, bandas de frequências, canais e sessões da experiência. Relativamente ao grupo teta, os testes revelaram que a RWE na banda de frequência alfa no canal AF8 durante a primeira sessão aumentou de AB para BB (t=2.2701, p=0.01919). Durante a segunda sessão, foi observado um aumento dos valores de RWE na banda de frequências teta no canal TP10 da condição AB para BB (t=2.4509, p=0.0135). Relativamente ao grupo beta, as seguintes observações correspondem à primeira sessão, da condição AB para BB: uma diminuição significativa de RWE na banda de frequências beta no canal TP10 (t=-2.3364, p=0.0181) e um aumento significativo de RWE na banda delta no canal TP10 (t=4.3193, p=0.0004164) e no canal TP9 (t=2.7144, p=0.00885). Quanto aos efeitos dos BBs na performance de memória episódica, os testes t revelaram diferenças significativas nas pontuações entre as condições AB e BB durante a primeira sessão (t=-2.48, p=0.0133) e segunda sessão (t=-2.67, p=0.00914) no grupo teta, com pontuações mais altas observadas após a estimulação com BB. No grupo beta, diferenças significativas nas pontuações foram observadas entre as condições AB e BB durante a primeira sessão (t=-2.40, p=0.0154), com pontuações mais elevadas registadoa na condição BB. A análise entre os grupos demonstrou que o grupo beta superou o grupo teta em ambas as condições AB (t=3.37, p=0.00244) e BB (t=3.58, p=0.00143) durante a segunda sessão. Uma análise fatorial ANOVA II demonstrou que o efeito principal da condição foi significativo, sendo que os participantes que foram submetidos à estimulação com batimentos binaurais tiveram resultados mais altos (F(1,115)=5.49, p=0.0208). O efeito principal da sessão também foi significativo, com pontuações mais altas obtidas durante a segunda sessão (F(1,115)=9.206, p=0.00298). Houve interação significativa entre grupo e sessão (F(1,115)=5.11, p=0.0256). Para além disso, regressões lineares demonstraram que o aumento das pontuações de memória está associado ao aumento de RWE na banda de frequências beta (F(5,114) = 5.876, p < 0.0001). Este estudo mostra que é possível quantificar os potenciais evocados auditivos corticais usando um dispositivo de EEG de grau de consumidor. Foi demonstrado que os batimentos binaurais teta de 6 Hz e beta de 20 Hz têm efeito positivo no desempenho da memória episódica, comparativamente aos respetivos acoustic beats. Os participantes que foram estimulados com BBs beta tiveram melhores resultados nos testes de memória comparativamente aos que receberam estimulação com BBs teta, o que pode ser explicado pelo facto da atividade teta, característica da memória episódica, ter sido despertada durante a estimulação BB beta. No entanto, foi demonstrado que o aumento nas pontuações de memória episódica é explicado pelo aumento da RWE no ritmo beta. A resposta pós-frequência foi observada durante a exposição aos BBs teta, porém o mesmo não se verifica relativamente aos BBs beta. Para concluir, este estudo prova que os batimentos binaurais são moduladores neuronais, com envolvimento de respostas dinâmicas. Este efeito modulador da atividade cerebral pode ser a razão por trás da influência destes batimentos na memória episódica

    Cortical mechanisms for tinnitus in humans /

    Get PDF
    PhD ThesisThis work sought to characterise neurochemical and neurophysiological processes underlying tinnitus in humans. The first study involved invasive brain recordings from a neurosurgical patient, along with experimental manipulation of his tinnitus, to map the cortical system underlying his tinnitus. Widespread tinnitus-linked changes in low- and high-frequency oscillations were observed, along with inter-regional and cross-frequency patterns of communication. The second and third studies compared tinnitus patients to controls matched for age, sex and hearing loss, measuring auditory cortex spontaneous oscillations (with magnetoencephalography) and neurochemical concentrations (with magnetic resonance spectroscopy) respectively. Unlike in previous studies not controlled for hearing loss, there were no group differences in oscillatory activity attributable to tinnitus. However, there was a significant correlation between gamma oscillations (>30Hz) and hearing loss in the tinnitus group, and between delta oscillations (1-4Hz) and perceived tinnitus loudness. In the neurochemical study, tinnitus patients had significantly reduced GABA concentrations compared to matched controls, and within this group there was a positive correlation between choline concentration (potentially linked to acetylcholine and/or neuronal plasticity) and both hearing loss, and subjective tinnitus intensity and distress. In light of present and previous findings, tinnitus may be best explained by a predictive coding model of perception, which was tested in the final experiment. This directly controlled the three main quantities comprising predictive coding models, and found that delta/theta/alpha oscillations (1-12Hz) encoded the precision of predictions, beta oscillations (12-30Hz) encoded changes to predictions, and gamma oscillations represented surprise (unexpectedness of stimuli based on predictions). The work concludes with a predictive coding model of tinnitus that builds upon the present findings and settles unresolved paradoxes in the literature. In this, precursor processes (in varying combinations) synergise to increase the precision associated with spontaneous activity in the auditory pathway to the point where it overrides higher predictions of ‘silence’.Medical Research Council Wellcome Trust and the National Institutes of Healt
    corecore