125 research outputs found

    Effects of noise on the internal resonance of a nonlinear oscillator

    Get PDF
    We numerically analyze the response to noise of a system formed by two coupled mechanical oscillators, one of them having Duffing and van der Pol nonlinearities, and being excited by a self-sustaining force proportional to its own velocity. This system models the internal resonance of two oscillation modes in a vibrating solid beam clamped at both ends. In applications to nano- and micromechanical devices, clamped-clamped beams are subjected to relatively large thermal and electronic noise, so that characterizing the fluctuations induced by these effects is an issue of both scientific and technological interest. We pay particular attention to the action of stochastic forces on the stability of internal-resonance motion, showing that resonant oscillations become more robust than other forms of periodic motion as the quality factor of the resonant mode increases. The dependence on other model parameters - in particular, on the coupling strength between the two oscillators - is also assessed.Fil: Zanette, Damian Horacio. Comisión Nacional de Energía Atómica. Gerencia del Area de Investigación y Aplicaciones No Nucleares. Gerencia de Física (Centro Atómico Bariloche); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Partial periodic oscillation: an interesting phenomenon for a system of three coupled unbalanced damped Duffing oscillators with delays

    Get PDF
    In this paper, a system of two coupled damped Duffing resonators driven by a van der Pol oscillator with delays is studied. Some sufficient conditions to ensure the periodic and partial periodic oscillations for the system are established. Computer simulation is given to demonstrate our result

    FORCED NONLINEAR OSCILLATOR IN A FRACTAL SPACE

    Get PDF
    A critical hurdle of a nonlinear vibration system in a fractal space is the inefficiency in modelling the system. Specifically, the differential equation models cannot elucidate the effect of porosity size and distribution of the periodic property. This paper establishes a fractal-differential model for this purpose, and a fractal Duffing-Van der Pol oscillator (DVdP) with two-scale fractal derivatives and a forced term is considered as an example to reveal the basic properties of the fractal oscillator. Utilizing the two-scale transforms and He-Laplace method, an analytic approximate solution may be attained. Unfortunately, this solution is not physically preferred. It has to be modified along with the nonlinear frequency analysis, and the stability criterion for the equation under consideration is obtained. On the other hand, the linearized stability theory is employed in the autonomous arrangement. Consequently, the phase portraits around the equilibrium points are sketched. For the non-autonomous organization, the stability criteria are analyzed via the multiple time scales technique. Numerical estimations are designed to confirm graphically the analytical approximate solutions as well as the stability configuration. It is revealed that the exciting external force parameter plays a destabilizing role. Furthermore, both of the frequency of the excited force and the stiffness parameter, execute a dual role in the stability picture

    Huygens' synchronization of dynamical systems : beyond pendulum clocks

    Get PDF
    Synchronization is one of the most deeply rooted and pervasive behaviours in nature. It extends from human beings to unconscious entities. Some familiar examples include the fascinating motion of schools of fish, the simultaneous flashing of fireflies, a couple dancing in synchrony with the rhythm of the music, the synchronous firing of neurons and pacemaker cells, and the synchronized motion of pendulum clocks. In a first glimpse to these examples, the existence of selfsynchronization in nature may seem almost miraculous. However, the main "secret" behind this phenomenon is that there exists a communication channel, called coupling, such that the entities/systems can influence each other. This coupling can be, for instance, in the form of a physical interconnection or a certain chemical process. Although synchronization is a ubiquitous phenomenon among coupled oscillatory systems, its onset is not always obvious. Consequently, the following questions arise: How exactly do coupled oscillators synchronize themselves, and under what conditions? In some cases, obtaining answers for these questions is extremely challenging. Consider for instance, the famous example of Christiaan Huygens of two pendulum clocks exhibiting anti-phase or in-phase synchronized motion. Huygens did observe that there is a "medium" responsible for the synchronized motion, namely the bar to which the pendula are attached. However, despite the remarkably correct observation of Huygens, even today a complete rigorous mathematical explanation of this phenomenon, using proper models for pendula and flexible coupling bar, is still missing. The purpose of this thesis is to further pursue the nature of the synchronized motion occurring in coupled oscillators. The first part, addresses the problem of natural synchronization of arbitrary self-sustained oscillators with Huygens coupling. This means that in the analysis, the original setup of Huygens’ clocks is slightly modified in the sense that each pendulum clock is replaced by an arbitrary second order nonlinear oscillator and instead of the flexible wooden bar (called here Huygens’ coupling), a rigid bar of one degree of freedom is considered. Each oscillator is provided with a control input in order to guarantee steady-state oscillations. This requirement of having a control input to sustain the oscillations can be linked to Huygens’ pendulum clocks, where each pendulum is equipped with an escapement mechanism, which provides an impulsive force to the pendulum in order to keep the clocks running. Then, it is shown that the synchronized motion in the oscillators is independent of the kind of controller used to maintain the oscillations. Rather, the coupling bar, i.e. Huygens’ coupling is considered as the key element in the occurrence of synchronization. In particular, it is shown that the mass of the coupling bar determines the eventual synchronized behaviour in the oscillators, namely in-phase and anti-phase synchronization. The Poincaré method is used in order to determine the existence and stability of these synchronous motions. This is feasible since in the system there exists a natural small parameter, namely the coupling strength, which value is determined by the mass of the coupling bar. Next, the synchronization problem is addressed from a control point of view. First, the synchronization problem of two chaotic oscillators with Huygens’ coupling is discussed. It is shown that by driving the coupling bar with an external periodic excitation, it is possible to trigger the onset of chaos in the oscillators. The mass of the coupling bar is considered as the bifurcation parameter. When the oscillators are in a chaotic state, the synchronization phenomenon will not occur naturally. Consequently, it is demonstrated that by using a master-slave configuration or a mutual synchronization scheme, it is possible to achieve (controlled) synchronization. Secondly, the effect of time delay in the synchronized motion of oscillators with Huygens’ coupling is investigated. In this case, the wooden bar, is replaced by a representative dynamical system. This dynamical system generates a suitable control input for the oscillators such that in closed loop the system resembles a pair of oscillators with Huygens’ coupling. Under this approach, the oscillators do not need to be at the same location and moreover, the dynamical system generating the control input should be implemented separately, using for instance a computer. Consequently, the possibility of having communication time-delays (either in the oscillators or in the applied control input) comes into play. Then, the onset of in-phase and anti-phase synchronization in the coupled/controlled oscillators is studied as a function of the coupling strength and the time delay. In addition to computer simulations, the (natural and controlled) synchronized motion of the oscillators is validated by means of experiments. These experiments are performed in an experimental platform consisting of an elastically supported (controllable) rigid bar (in Huygens’ example the wooden bar) and two (controllable) mass-spring-damper oscillators (the pendulum clocks in Huygens’ case). A key feature of this platform is that its dynamical behaviour can be adjusted. This is possible due to the fact that the oscillators and the coupling bar can be actuated independently, then by using feedback, specific desirable oscillators’ dynamics are enforced and likewise the behaviour of the coupling bar is modified. This feature is exploited in order to experimentally study synchronous behaviour in a wide variety of dynamical systems. Another question considered in this thesis is related to the modeling of the real Huygens experiment. The models used in the first part of this thesis and the ones reported in the literature are simplifications of the real model: the coupling bar has been considered as a rigid body of one degree of freedom. However, in the real Huygens experiment, the bar to which the clocks are attached is indeed an infinite dimensional system for which a rigorous study of the in-phase and antiphase synchronized motion of the two pendula is, as far as is known, still never addressed in the literature. The second part of the thesis focuses on this. A Finite Element Modelling technique is used in order to derive a model consisting of a (finite) set of ordinary differential equations. Numerical results illustrating all the possible stationary solutions of the "true" infinite dimensional Huygens problem are included. In summary, the results contained in the thesis in fact reveal that the synchronized motion observed by Huygens extends beyond pendulum clocks

    New criteria on global asymptotic synchronization of Duffing-type oscillator system

    Get PDF
    In this paper, we are concerned with global asymptotic synchronization of Duffing-type oscillator system. Without using matrix measure theory, graph theory and LMI method, which are recently widely applied to investigating global exponential/asymptotic synchronization for dynamical systems and complex networks, four novel sufficient conditions on global asymptotic synchronization for above system are acquired on the basis of constant variation method, integral factor method and integral inequality skills.&nbsp

    General mechanism for amplitude death in coupled systems

    Full text link
    We introduce a general mechanism for amplitude death in coupled synchronizable dynamical systems. It is known that when two systems are coupled directly, they can synchronize under suitable conditions. When an indirect feedback coupling through an environment or an external system is introduced in them, it is found to induce a tendency for anti-synchronization. We show that, for sufficient strengths, these two competing effects can lead to amplitude death. We provide a general stability analysis that gives the threshold values for onset of amplitude death. We study in detail the nature of the transition to death in several specific cases and find that the transitions can be of two types - continuous and discontinuous. By choosing a variety of dynamics for example, periodic, chaotic, hyper chaotic, and time-delay systems, we illustrate that this mechanism is quite general and works for different types of direct coupling, such as diffusive, replacement, and synaptic couplings and for different damped dynamics of the environment.Comment: 12 pages, 17 figure

    Some elements for a history of the dynamical systems theory

    Get PDF
    Leon Glass would like to thank the Natural Sciences and Engineering Research Council (Canada) for its continuous support of curiosity-driven research for over 40 years starting with the events recounted here. He also thanks his colleagues and collaborators including Stuart Kauffman, Rafael Perez, Ronald Shymko, Michael Mackey for their wonderful insights and collaborations during the times recounted here. R.G. is endebted to the following friends and colleagues, listed in the order encountered on the road described: F. T. Arecchi, L. M. Narducci, J. R. Tredicce, H. G. Solari, E. Eschenazi, G. B. Mindlin, J. L. Birman, J. S. Birman, P. Glorieux, M. Lefranc, C. Letellier, V. Messager, O. E. Rössler, R. Williams. U.P. would like to thank the following friends and colleagues who accompanied his first steps into the world of nonlinear phenomena: U. Dressler, I. Eick, V. Englisch, K. Geist, J. Holzfuss, T. Klinker, W. Knop, A. Kramer, T. Kurz, W. Lauterborn, W. Meyer-Ilse, C. Scheffczyk, E. Suchla and M. Wisenfeldt. The work by L. Pecora and T. Carroll was supported directly by the Office of Naval Research (ONR) and by ONR through the Naval Research Laboratory’s Basic Research Program. C.L. would like to thank Jürgen Kurths for his support to this project.Peer reviewedPostprintPublisher PD
    corecore