2,066 research outputs found

    A Framework to Control Functional Connectivity in the Human Brain

    Full text link
    In this paper, we propose a framework to control brain-wide functional connectivity by selectively acting on the brain's structure and parameters. Functional connectivity, which measures the degree of correlation between neural activities in different brain regions, can be used to distinguish between healthy and certain diseased brain dynamics and, possibly, as a control parameter to restore healthy functions. In this work, we use a collection of interconnected Kuramoto oscillators to model oscillatory neural activity, and show that functional connectivity is essentially regulated by the degree of synchronization between different clusters of oscillators. Then, we propose a minimally invasive method to correct the oscillators' interconnections and frequencies to enforce arbitrary and stable synchronization patterns among the oscillators and, consequently, a desired pattern of functional connectivity. Additionally, we show that our synchronization-based framework is robust to parameter mismatches and numerical inaccuracies, and validate it using a realistic neurovascular model to simulate neural activity and functional connectivity in the human brain.Comment: To appear in the proceedings of the 58th IEEE Conference on Decision and Contro

    Dynamical principles in neuroscience

    Full text link
    Dynamical modeling of neural systems and brain functions has a history of success over the last half century. This includes, for example, the explanation and prediction of some features of neural rhythmic behaviors. Many interesting dynamical models of learning and memory based on physiological experiments have been suggested over the last two decades. Dynamical models even of consciousness now exist. Usually these models and results are based on traditional approaches and paradigms of nonlinear dynamics including dynamical chaos. Neural systems are, however, an unusual subject for nonlinear dynamics for several reasons: (i) Even the simplest neural network, with only a few neurons and synaptic connections, has an enormous number of variables and control parameters. These make neural systems adaptive and flexible, and are critical to their biological function. (ii) In contrast to traditional physical systems described by well-known basic principles, first principles governing the dynamics of neural systems are unknown. (iii) Many different neural systems exhibit similar dynamics despite having different architectures and different levels of complexity. (iv) The network architecture and connection strengths are usually not known in detail and therefore the dynamical analysis must, in some sense, be probabilistic. (v) Since nervous systems are able to organize behavior based on sensory inputs, the dynamical modeling of these systems has to explain the transformation of temporal information into combinatorial or combinatorial-temporal codes, and vice versa, for memory and recognition. In this review these problems are discussed in the context of addressing the stimulating questions: What can neuroscience learn from nonlinear dynamics, and what can nonlinear dynamics learn from neuroscience?This work was supported by NSF Grant No. NSF/EIA-0130708, and Grant No. PHY 0414174; NIH Grant No. 1 R01 NS50945 and Grant No. NS40110; MEC BFI2003-07276, and FundaciĂłn BBVA

    Perspectives on the Neuroscience of Cognition and Consciousness

    Get PDF
    The origin and current use of the concepts of computation, representation and information in Neuroscience are examined and conceptual flaws are identified which vitiate their usefulness for addressing problems of the neural basis of Cognition and Consciousness. In contrast, a convergence of views is presented to support the characterization of the Nervous System as a complex dynamical system operating in the metastable regime, and capable of evolving to configurations and transitions in phase space with potential relevance for Cognition and Consciousness
    • …
    corecore