1,679 research outputs found

    Oscillation-based DFT for Second-order Bandpass OTA-C Filters

    Get PDF
    This document is the Accepted Manuscript version. Under embargo until 6 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s00034-017-0648-9.This paper describes a design for testability technique for second-order bandpass operational transconductance amplifier and capacitor filters using an oscillation-based test topology. The oscillation-based test structure is a vectorless output test strategy easily extendable to built-in self-test. The proposed methodology converts filter under test into a quadrature oscillator using very simple techniques and measures the output frequency. Using feedback loops with nonlinear block, the filter-to-oscillator conversion techniques easily convert the bandpass OTA-C filter into an oscillator. With a minimum number of extra components, the proposed scheme requires a negligible area overhead. The validity of the proposed method has been verified using comparison between faulty and fault-free simulation results of Tow-Thomas and KHN OTA-C filters. Simulation results in 0.25μm CMOS technology show that the proposed oscillation-based test strategy for OTA-C filters is suitable for catastrophic and parametric faults testing and also effective in detecting single and multiple faults with high fault coverage.Peer reviewedFinal Accepted Versio

    On the Enhancement of Generalized Integrator-based Adaptive Filter Dynamic Tuning Range

    Get PDF

    Progress of Doppler Ultrasound System Design and Architecture

    Get PDF

    Parametric circuit fault diagnosis through oscillation based testing in analogue circuits : statistical and deep learning approaches

    Get PDF
    Oscillation-based testing of analogue electronic filters removes the need for test signal synthesis. Parametric faults in the presence of normal component tolerance variation are challenging to detect and diagnose. This study demonstrates the suitability of statistical learning and deep learning techniques for parametric fault diagnosis and detection by investigating several time-series classification techniques. Traditional harmonic analysis is used as a baseline for an in-depth comparison. Eight standard classification techniques are applied and compared. Deep learning approaches, which classify the time-series signals directly, are shown to benefit from the oscillator start-up region for feature extraction. Global average pooling in the convolutional neural networks (CNN) allows for Class Activation Maps (CAM). This enables interpreting the time-series signal’s discriminative regions and confirming the importance of the start-up oscillation signal. The deep learning approach outperforms the harmonic analysis approach on simulated data by an average of 11.77% in classification accuracy for the three parametric fault magnitudes considered in this work.https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639Electrical, Electronic and Computer Engineerin

    Particle filter-based estimation of instantaneous frequency for the diagnosis of electrical asymmetries in induction machines

    Get PDF
    "© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.” Upon publication, authors are asked to include either a link to the abstract of the published article in IEEE Xplore®, or the article’s Digital Object Identifier (DOI).Fault diagnosis of induction machines operating under variable load conditions is still an unsolved matter. Under those regimes, the application of conventional diagnostic techniques is not suitable, since they are adapted to the analysis of stationary quantities. In this context, modern transient-based methodologies become very appropriate. This paper improves a technique, based on the application of Wigner Ville distribution as time frequency decomposition tool, using a particle filtering method as feature extraction procedure, to diagnose and quantify electrical asymmetries in induction machines, such as wound- rotor induction generators used in wind farms. The combination of both tools allows tracking several variable frequency harmon- ics simultaneously and computing their energy with high accu- racy, yielding magnitudes and values similar to those obtained by the application of the fast Fourier transform in stationary operation. The experimental results show the validity of the approach for rapid speed variations, independently of any speed sensor.Climente Alarcon, V.; Antonino Daviu, JA.; Haavisto, A.; Arkkio, A. (2014). Particle Filter-Based Estimation of Instantaneous Frequency for the Diagnosis of Electrical Asymmetries in Induction Machines. IEEE Transactions on Instrumentation and Measurement. 63(10):2454-2463. doi:10.1109/TIM.2014.231011324542463631

    A Review of Modeling and Diagnostic Techniques for Eccentricity Fault in Electric Machines

    Get PDF
    Research on the modeling and fault diagnosis of rotor eccentricities has been conducted during the past two decades. A variety of diagnostic theories and methods have been proposed based on different mechanisms, and there are reviews following either one type of electric machines or one type of eccentricity. Nonetheless, the research routes of modeling and diagnosis are common, regardless of machine or eccentricity types. This article tends to review all the possible modeling and diagnostic approaches for all common types of electric machines with eccentricities and provide suggestions on future research roadmap. The paper indicates that a reliable low-cost non-intrusive real-time online visualized diagnostic method is the trend. Observer-based diagnostic strategies are thought promising for the continued research

    The monitoring of induction motor starting transients with a view to early fault detection.

    Get PDF
    The aim of this work is to investigate the possibility of detecting faults in a 3 phase Induction motor by monitoring and analysing the transient line current waveform during the starting period. This is a particularly onerous time for the machine and the inter-relationships between parameters such as current, torque, speed and time are very complex. As a result two parallel paths of investigation have been followed, by methods of experimentation and computer simulation. Transient line current signals have been obtained from purpose built test rigs and these signals have been analysed in both the time and frequency domains. In order to assist with the comprehension of this data a sophisticated computer simulation of the induction motor during the starting period has also been developed. Computer simulation of the induction motor has been developed initially using the two and then three phase induction motor voltage equations which are solved by numerical integration. Using these techniques it has been possible to detect small degrees of fault level for both wound and cage rotor machines by analysing the line current waveform during the starting period. Good agreement has been found between the real and simulated data. A range of Digital Signal Processing techniques have been utilised to extract the components indicative of rotor faults. These techniques were at first wideband and highly numerically intensive, some originating from Speech Processing. The final processing techniques were far simpler and selected by analysis of the results from experimental data, both real and simulated
    corecore