44,785 research outputs found

    Pancreatic hormones and amino acid levels following liver transplantation

    Get PDF
    Glucose intolerance, hyperinsulinemia, peripheral insulin resistance and hyperglucagonemia are common in patients with advanced liver disease. These abnormalities in the plasma levels of the pancreatic hormones, insulin and glucagon have been thought to be responsible, at least in part, for the abnormal plasma ratio of branched‐chain amino acids to aromatic amino acids. To evaluate this issue, plasma levels of glucose, insulin, glucagon, C‐peptide and the branched‐chain and aromatic amino acids were measured before and serially after orthotopic liver transplantation in 9 humans and 5 dogs. The abnormal plasma amino acid levels rapidly improved and achieved normal levels following orthotopic liver transplantation. Insulin levels also became normal following orthotopic liver transplantation, despite enhanced insulin secretion documented by an even further increased level of C‐peptide. In contrast, the baseline abnormal plasma glucagon levels which are commonly seen in cirrhotics became even more abnormal following orthotopic liver transplantation. Despite this progressive increase in the abnormally elevated plasma glucagon levels, plasma amino acid levels, both branched‐chain and aromatic, became normal. These data demonstrate that before and after orthotopic liver transplantation, there is: (i) no relationship between the changes in plasma levels of glucagon and changes observed in the plasma level of amino acids; and (ii) plasma insulin and amino acid levels change in the same direction. In addition, these changes in plasma insulin and amino acid levels following orthotopic liver transplantation occur despite enhanced secretion of insulin evidenced by the progressive increase in plasma levels of C‐peptide. Copyright © 1987 American Association for the Study of Liver Disease

    Patient-derived mouse models of cancer need to be orthotopic in order to evaluate targeted anti-metastatic therapy.

    Get PDF
    Patient-derived xenograft (PDX) mouse models of cancer are emerging as an important component of personalized precision cancer therapy. However, most models currently offered to patients have their tumors subcutaneously-transplanted in immunodeficient mice, which rarely metastasize. In contrast, orthotopic-transplant patient-derived models, termed patient-derived orthotopic xenografts (PDOX), usually metastasize as in the patient. We demonstrate in the present report why orthotopic models are so important for the patient, since primary and metastatic tumors developed in an orthotopic model can have differential chemosensitivity, not detectable in standard subcutaneous tumor models. A subcutaneous nude mouse model of HER-2 expressing cervical carcinoma was not sensitive to entinostat (a benzamide histone deactylase inhibitor), which also did not inhibit primary tumor growth in a PDOX model of the same tumor. However, in the PDOX model, entinostat alone significantly reduced the metastatic tumor burden, compared to the control. Thus, only the PDOX model could be used to discover the anti-metastatic activity of entinostat for this patient. The results of the present report indicate the importance of using mouse models that can recapitulate metastatic cancer for precisely individualizing cancer therapy

    Near infra-red photoimmunotherapy with anti-CEA-IR700 results in extensive tumor lysis and a significant decrease in tumor burden in orthotopic mouse models of pancreatic cancer.

    Get PDF
    Photoimmunotherapy (PIT) of cancer utilizes tumor-specific monoclonal antibodies conjugated to a photosensitizer phthalocyanine dye IR700 which becomes cytotoxic upon irradiation with near infrared light. In this study, we aimed to evaluate the efficacy of PIT on human pancreatic cancer cells in vitro and in vivo in an orthotopic nude mouse model. The binding capacity of anti-CEA antibody to BxPC-3 human pancreatic cancer cells was determined by FACS analysis. An in vitro cytotoxicity assay was used to determine cell death following treatment with PIT. For in vivo determination of PIT efficacy, nude mice were orthotopically implanted with BxPC-3 pancreatic tumors expressing green fluorescent protein (GFP). After tumor engraftment, the mice were divided into two groups: (1) treatment with anti-CEA-IR700 + 690 nm laser and (2) treatment with 690 nm laser only. Anti-CEA-IR700 (100 μg) was administered to group (1) via tail vein injection 24 hours prior to therapy. Tumors were then surgically exposed and treated with phototherapy at an intensity of 150 mW/cm2 for 30 minutes. Whole body imaging was done subsequently for 5 weeks using an OV-100 small animal imaging system. Anti-CEA-IR700 antibody bound to the BxPC3 cells to a high degree as shown by FACS analysis. Anti-CEA-IR700 caused extensive cancer cell killing after light activation compared to control cells in cytotoxicity assays. In the orthotopic models of pancreatic cancer, the anti-CEA-IR700 group had significantly smaller tumors than the control after 5 weeks (p<0.001). There was no significant difference in the body weights of mice in the anti-CEA-IR700 and control groups indicating that PIT was well tolerated by the mice

    Vemurafenib-resistant BRAF-V600E-mutated melanoma is regressed by MEK-targeting drug trametinib, but not cobimetinib in a patient-derived orthotopic xenograft (PDOX) mouse model.

    Get PDF
    Melanoma is a recalcitrant disease. The present study used a patient-derived orthotopic xenograft (PDOX) model of melanoma to test sensitivity to three molecularly-targeted drugs and one standard chemotherapeutic. A BRAF-V600E-mutant melanoma obtained from the right chest wall of a patient was grown orthotopically in the right chest wall of nude mice to establish a PDOX model. Two weeks after implantation, 50 PDOX nude mice were divided into 5 groups: G1, control without treatment; G2, vemurafenib (VEM) (30 mg/kg); G3; temozolomide (TEM) (25 mg/kg); G4, trametinib (TRA) (0.3 mg/kg); and G5, cobimetinib (COB) (5 mg/kg). Each drug was administered orally, daily for 14 consecutive days. Tumor sizes were measured with calipers twice a week. On day 14 from initiation of treatment, TRA, an MEK inhibitor, was the only agent of the 4 tested that caused tumor regression (P < 0.001 at day 14). In contrast, another MEK inhibitor, COB, could slow but not arrest growth or cause regression of the melanoma. First-line therapy TEM could slow but not arrest tumor growth or cause regression. The patient in this study had a BRAF-V600E-mutant melanoma and would be considered to be a strong candidate for VEM as first-line therapy, since VEM targets this mutation. However, VEM was not effective. The PDOX model thus helped identify the very-high efficacy of TRA against the melanoma PDOX and is a promising drug for this patient. These results demonstrate the powerful precision of the PDOX model for cancer therapy, not achievable by genomic analysis alone

    Precise navigation surgery of tumours in the lung in mouse models enabled by in situ fluorescence labelling with a killer-reporter adenovirus.

    Get PDF
    BackgroundCurrent methods of image-guided surgery of tumours of the lung mostly rely on CT. A sensitive procedure of selective tumour fluorescence labelling would allow simple and high-resolution visualisation of the tumour for precise surgical navigation.MethodsHuman lung cancer cell lines H460 and A549 were genetically transformed to express red fluorescent protein (RFP). Tumours were grown subcutaneously for each cell line and harvested and minced for surgical orthotopic implantation on the left lung of nude mice. Tumour growth was measured by fluorescence imaging. After the tumours reached 5 mm in diameter, they were injected under fluorescence guidance with the telomerase-dependent green fluorescent protein (GFP)-containing adenovirus, OBP-401. Viral labelling of the lung tumours with GFP precisely colocalised with tumour RFP expression. Three days after administration of OBP-401, fluorescence-guided surgery (FGS) was performed.ResultsFGS of tumours in the lung was enabled by labelling with a telomerase-dependent adenovirus containing the GFP gene. Tumours in the lung were selectively and brightly labelled. FGS enabled complete lung tumour resection with no residual fluorescent tumour.ConclusionsFGS of tumours in the lung is feasible and more effective than bright-light surgery

    Therapeutic efficacy of tumor-targeting Salmonella typhimurium A1-R on human colorectal cancer liver metastasis in orthotopic nude-mouse models.

    Get PDF
    Liver metastasis is the most frequent cause of death from colon and other cancers. Generally, liver metastasis is recalcitrant to treatment. The aim of this study is to determine the efficacy of tumor-targeting Salmonella typhimurium A1-R on liver metastasis in orthotopic mouse models. HT-29 human colon cancer cells expressing red fluorescent protein (RFP) were used in the present study. S. typhimurium A1-R infected HT-29 cells in a time-dependent manner, inhibiting cancer-cell proliferation in vitro. S. typhimurium A1-R promoted tumor necrosis and inhibited tumor growth in a subcutaneous tumor mouse model of HT-29-RFP. In orthotopic mouse models, S. typhimurium A1-R targeted liver metastases and significantly reduced their growth. The results of this study demonstrate the future clinical potential of S. typhimurium A1-R targeting of liver metastasis

    Adenoviral targeting of malignant melanoma for fluorescence-guided surgery prevents recurrence in orthotopic nude-mouse models.

    Get PDF
    Malignant melanoma requires precise resection in order to avoid metastatic recurrence. We report here that the telomerase-dependent, green fluorescent protein (GFP)-containing adenovirus OBP-401 could label malignant melanoma with GFP in situ in orthotopic mouse models. OBP-401-based fluorescence-guided surgery (FGS) resulted in the complete resection of malignant melanoma in the orthotopic models, where conventional bright-light surgery (BLS) could not. High-dose administration of OBP-401 enabled FGS without residual cancer cells or recurrence, due to its dual effect of cancer-cell labeling with GFP and killing

    Trabectedin arrests a doxorubicin-resistant PDGFRA-activated liposarcoma patient-derived orthotopic xenograft (PDOX) nude mouse model.

    Get PDF
    BACKGROUND:Pleomorphic liposarcoma (PLPS) is a rare, heterogeneous and an aggressive variant of liposarcoma. Therefore, individualized therapy is urgently needed. Our recent reports suggest that trabectedin (TRAB) is effective against several patient-derived orthotopic xenograft (PDOX) mouse models. Here, we compared the efficacy of first-line therapy, doxorubicin (DOX), and TRAB in a platelet-derived growth factor receptor-α (PDGFRA)-amplified PLPS. METHODS:We used a fresh sample of PLPS tumor derived from a 68-year-old male patient diagnosed with a recurrent PLPS. Subcutaneous implantation of tumor tissue was performed in a nude mouse. After three weeks of implantation, tumor tissues were isolated and cut into small pieces. To match the patient a PDGFRA-amplified PLPS PDOX was created in the biceps femoris of nude mice. Mice were randomized into three groups: Group 1 (G1), control (untreated); Group 2 (G2), DOX-treated; Group 3 (G3), TRAB-treated. Measurement was done twice a week for tumor width, length, and mouse body weight. RESULTS:The PLPS PDOX showed resistance towards DOX. However, TRAB could arrest the PLPS (p < 0.05 compared to control; p < 0.05 compared to DOX) without any significant changes in body-weight. CONCLUSIONS:The data presented here suggest that for the individual patient the PLPS PDOX model could specifically distinguish both effective and ineffective drugs. This is especially crucial for PLPS because effective first-line therapy is harder to establish if it is not individualized
    corecore