559 research outputs found

    Cartographic data harmonisation for a cross-border project development

    Get PDF
    An essential support for environmental monitoring activities is a rigorous definition of an homogeneous cartographic system required to correctly georeference the acquired data. Furthermore, since the 2007, the European INSPIRE Directive (INfrastructure for Spatial InfoRmation in the European Community) affirms the necessity to harmonize the European maps for permitting cross-border analysis. For satisfying these requirements, the authors have developed a procedure for the cartographic harmonisation in the cross border area studied during in the European project ALCOTRA (Alpes Latines- COopĂ©ration TRAnsfrontaliĂšre) – ALIRHyS (Alpes Latines- Individuation Resources Hydriques Souterraines). It concerns the hydrogeological study of various springs and other water resources in an area between Italy and France including their constitution in a cross-border system. The basic cartographic information is obtained from existing national maps (Italian and French data), which use different reference systems and are produced from different data acquisitions and processes. In this paper the authors describe the methods used to obtain well-harmonised middle-scale maps (aerial orthophotos, Digital Terrain Model and digital maps). The processing has been performed using GIS software or image analysis software in order to obtain useful and correct cartographic support for the monitoring data, even if the obtained maps could be further analysed or refined in future works

    Improving Community Capacity in Rapid Disaster Mapping: An Evaluation of Summer School

    Get PDF
    Experiences with natural disasters have intensified recent efforts to enhance cooperation mechanisms among official disaster management institutions to community participation. These experiences reveal a need to enhance rapid mapping technical assistance to be developed and shared among young scientists through a summer school. However, the question arose of how effective this summer school to be used as a tool to increase scientists’ understanding and capacity. This study sought to evaluate the extent to which human resource capacity building can be effectively implemented. The methods used for this evaluation is through observations, questionnaires and a weighted scoring based on knowledge, skills and attitudes’ criteria. The results indicate a significant improvement in knowledge (94.56%), skills (82%) and attitudes (85.20%) among the participants. Even though there are still gaps in participants’ skills, the summer school was found to be an effective way to train the young scientists for rapid mapping

    UAV Based Agricultural Planning and Landslide Monitoring

    Get PDF
    Unmanned Aerial Vehicle (UAV) is finding a wide application field in areas such as map production, land survey, landslide, erosion, agricultural activities, and forest fires monitoring. In this study, an UAV equipped with SONY 6000 camera was used. The flight plan was prepared from 100 m height, and having 80% overlap and 60% sidelap rates. GNSS geodetic receivers and Ground Control Points (GCPs) were observed. GNSS signals were processed with LGO V.8.4 software to receive precise location information. 291 photographs for 50 hectares of landslide area were taken by UAV. All photos were processed by PIX4D software. In the field of the landslide area, 8 GCPs were included in the evaluation. 3D model were produced with pixel matching algorithms. Six period flights in different months were made for the landslide area and ground movements between the periods were observed. During this time interval , the volume of moving soil was determined. At the end of the study, RMSE for soil movement was obtained ±1.79 cm for landslide area. This study demonstrates that UAV-based high resolution orthophoto, 3D terrain model and point cloud data sets can be used to monitor the landslide, especially in micro small areas. It also was revealed that this method has some advantages over other traditional geomatics methods

    UAV strategies validation and remote sensing data for damage assessment in post-disaster scenarios

    Get PDF
    The recent seismic swarms, occurred in Italy since August 2016, outlined the importance of deepen Geomatics researches for the validation of new strategies aimed at rapid-mapping and documenting differently accessible and complex environments, as in urban contexts and damaged built heritage. In the emergency response, the crucial exploitation of technological advances should obtain and efficiently organize high-scale reliable geospatial data for the early warning, impact, and recovery phases. Fulfilling these issues, among others, the Copernicus EMS, has played by now an important role in immediate and extensive damage reconnaissance, as in the case of Centre Italy. Nevertheless, the use of remote sensing data is still affected by a problem of point-of-view, scale and detectable detail. Nadir images, airborne or satellite, in fact, strongly limited the confidence level of these products. The subjectivity of the operator involvement is still an open issue, both in the first fieldwork assessment, and in the following operational approach of interpretative damage detection and rapid mapping production. To overcome these limits, the introduction of UAV platforms for photogrammetric purposes, has proven to be a sustainable approach in terms of time savings, operators’ safety, reliability and accuracy of results: the nadir and oblique integration can provide large multiscale models, with the fundamental information related to the façades conditions. The presented research, conducted within the Central Italy earthquakes events, will focus on potentialities and limits of UAV photogrammetry in the two documented sites: Pescara del Tronto and Accumoli. Here, the aim is not limited to describe a series of strategies for georeferencing, blocks orientation and multitemporal co-registration solutions, but also to validate the implemented pipelines as a workflow that could be integrated in the operative intervention for emergency response in early impact activities. Thus, it would be possible to use this 3D metric products as a reference-data for significative improvements of reliability in typical visual inspection and mapping, flanking the traditional nadir airborne- or satellite-based products. The UAV acquisitions performed in two damaged villages are displayed, in order to underline the implication of the spatial information embedded in DSM reconstruction and 3D models, supporting more reliable damage assessments

    Trying to break new ground in aerial archaeology

    Get PDF
    Aerial reconnaissance continues to be a vital tool for landscape-oriented archaeological research. Although a variety of remote sensing platforms operate within the earth’s atmosphere, the majority of aerial archaeological information is still derived from oblique photographs collected during observer-directed reconnaissance flights, a prospection approach which has dominated archaeological aerial survey for the past century. The resulting highly biased imagery is generally catalogued in sub-optimal (spatial) databases, if at all, after which a small selection of images is orthorectified and interpreted. For decades, this has been the standard approach. Although many innovations, including digital cameras, inertial units, photogrammetry and computer vision algorithms, geographic(al) information systems and computing power have emerged, their potential has not yet been fully exploited in order to re-invent and highly optimise this crucial branch of landscape archaeology. The authors argue that a fundamental change is needed to transform the way aerial archaeologists approach data acquisition and image processing. By addressing the very core concepts of geographically biased aerial archaeological photographs and proposing new imaging technologies, data handling methods and processing procedures, this paper gives a personal opinion on how the methodological components of aerial archaeology, and specifically aerial archaeological photography, should evolve during the next decade if developing a more reliable record of our past is to be our central aim. In this paper, a possible practical solution is illustrated by outlining a turnkey aerial prospection system for total coverage survey together with a semi-automated back-end pipeline that takes care of photograph correction and image enhancement as well as the management and interpretative mapping of the resulting data products. In this way, the proposed system addresses one of many bias issues in archaeological research: the bias we impart to the visual record as a result of selective coverage. While the total coverage approach outlined here may not altogether eliminate survey bias, it can vastly increase the amount of useful information captured during a single reconnaissance flight while mitigating the discriminating effects of observer-based, on-the-fly target selection. Furthermore, the information contained in this paper should make it clear that with current technology it is feasible to do so. This can radically alter the basis for aerial prospection and move landscape archaeology forward, beyond the inherently biased patterns that are currently created by airborne archaeological prospection

    UAV-BASED ARCHAEOLOGICAL 3D MONITORING: A RURALSCAPE CASE IN IRAQI KURDISTAN

    Get PDF
    Recently rapid mapping techniques based on UAV photogrammetry increasingly help on-site archaeological documentation works. Multi-temporal data are specifically crucial in diachronic investigation research, and for this purpose the data co-registration and integration can support the accurate 3D digitization of excavation phases and make coherent topological relation among them and phases-related stratigraphic units’ data. In this framework, the level of automation and accuracy control are challenging aspects to streamline the documentation process during excavation activities, however all experimentation phases must be tested and validated in the actual archaeological context, where the boundary conditions are typically demanding. This research is developed during the collaboration project with Cà Foscari University of Venice, started in 2022 campaign, in the excavation site of Tell Zeyd, in Iraqi Kurdistan, The Tell Zeyd Archaeological Project (ZAP) aims to study the rural landscape of the hinterland of Mosul in the long Islamic period, from the Arab conquest in the 7th century to the disintegration of the Ottoman Empire with the First World War, as an ideal observatory on the characteristics of the settlement in its spatial organisation, places of worship, production installations and facilities for storing foodstuffs. The research aims to present the preliminary test and results on an experimental documentation activity based on multi-scale UAV mapping strategy and training with the archaeological expert group, and particularly for automatic co-registration of multi-temporal data, considering different images datasets epochs belonging to subsequent excavation phases

    3D survey technologies: Investigations on accuracy and usability in archaeology. The case study of the new "Municipio" underground station in Naples

    Get PDF
    Advanced 3D survey technologies, such as Digital Photogrammetry (imaged based) and Laser Scanner, are nowadays widely used in Cultural Heritage and Archaeological fields. The present paper describes the investigations realized by the Laboratory Hesutech of the Polytechnic of Milan in cooperation with the Superintendence Archaeology Campania in order to examine the potentiality of Image Based Modeling (IBM) systems applied to the archaeological field for advanced documentation purposes. Besides the 3D model production workflow in an uncommon excavation environment, a special consideration about the reached accuracy will be discussed. In the first part of the research, a comparison between photogrammetric camera parameters obtained with IBM systems and the ones provided with the calibration certificate by the manufacturer of the camera is performed. In the second part of the research, the operational phases of the application of such advanced 3D survey technologies are shown. The test field is the archaeological excavation area for the construction of the new "Municipio" underground station in Naples. Due to its position in one of the historical area of the city, its construction coexists with the archaeological excavations and it is strictly tied to their evolution. In such conditions, the need to reduce as much as possible the time to build the public infrastructure is a very relevant feature together with the ability to produce accurate documentation of what is considered archaeologically important

    Using historical aerial photography for monitoring of environment changes: a case study of Bovan Lake, Eastern Serbia

    Get PDF
    Useful and important information for the spatial, ecological, and many other changes in the living environment may be obtained using the analysis of historical aerial photography, with comparison to contemporary imagery. This method provides the ability to determine the state of elements of the space over a long period, encompassing the time when it was not possible to acquire the data from satellite imagery or some other contemporary sources. Aerial images are suitable for mapping spatial phenomena with relatively limited spatial distribution because they possess a high level of details and low spatial coverage. With a comparative analysis of aerial imagery from the past, contemporary aerial imagery, and other sources of aerial imagery, we can obtain information about the nature and trends of the observed phenomena as well as directions of future actions, considering changes detected in the environment, whether they are preventive or corrective in nature. This paper gives the methodological framework for the appliance of the existing knowledge from various fields, intending to use historical aerial photography for monitoring of environmental changes of the Bovan Lake in Eastern Serbia
    • 

    corecore