118 research outputs found

    Biomedical Applications of the Discrete Wavelet Transform

    Get PDF

    Orthonormal-Basis Partitioning And Time-Frequency Representation of Non-Stationary Signals

    Get PDF
    Spectral analysis is important in many fields, such as speech, radar and biomedicine. Many signals encountered in these areas possess time-varying spectral characteristics. The power spectrum indicates what frequencies exist in the signal but it does not show when those frequencies occur. Time-frequency analysisprovides this missing information. A time-frequency representation of the signal shows the intensities of the frequencies in the signal at the times they occur, and thus reveals if and how the frequencies of a signal are changing over time.Time-dependent spectral analysis of beat-to-beat variations of cardiac rhythm, or heart rate variability (HRV), represents a major challenge due to the structure of the signal. A number oftime-frequency representations have been proposed for the estimation of the time-dependent spectra. However, time-frequency analysis of multicomponent physiological signals such as cardiac rhythm is complicated by the presence of numerous, ill-structured frequency elements. We sought to develop a simple method for 1)detecting changes in the structure of the HRV signal, 2)segmenting the signal into pseudo-stationary portions, and 3)exposing characteristic patterns of the changes in thetime-frequency plane. The method, referred to as Orthonormal-Basis Partitioning and Time-Frequency Representation (OPTR), is validated on simulated signals and HRV data. Unlike the traditional time-frequency HRV representations, which are usuallyapplied to short segments of signals recorded in controlled conditions, OPTR can be applied to long and "content-rich" ambulatory signals to obtain the signal representation along withits time-varying spectrum. Thus, the proposed approach extends the scope of applications of the time-frequency analysis to all types of HRV signals and to other physiological data

    Quantification of Irregular Rhythms in Chronobiology: A Time- Series Perspective

    Get PDF
    In optimal conditions of youth and health, most—if not all—physiological systems obey regular circadian rhythms in response to the periodic day-night cycle and can be well described by standard techniques such as cosinor analysis. Adverse conditions can disturb the regularity and amplitude of circadian cycles, and, recently, there is interest in the field of chronobiology to quantify irregularities in the circadian rhythm as a means to track underlying pathologies. Alterations in physiological rhythms over a wide range of frequency scales may give additional information on health conditions but are often not considered in traditional analyses. Wavelets have been introduced to decompose physiological time series in components of different frequencies and can quantify irregular patterns, but the results may depend on the choice of the mother wavelet basis which is arbitrary. An alternative approach are recent data-adaptive time-series decomposition techniques, such as singular spectrum analysis (SSA), where the basis functions are generated by the data itself and are user-independent. In the present contribution, we compare wavelets and SSA analysis for the quantification of irregular rhythms at different frequency scales and discuss their respective advantages and disadvantages for application in chronobiology

    ECG analysis and classification using CSVM, MSVM and SIMCA classifiers

    Get PDF
    Reliable ECG classification can potentially lead to better detection methods and increase accurate diagnosis of arrhythmia, thus improving quality of care. This thesis investigated the use of two novel classification algorithms: CSVM and SIMCA, and assessed their performance in classifying ECG beats. The project aimed to introduce a new way to interactively support patient care in and out of the hospital and develop new classification algorithms for arrhythmia detection and diagnosis. Wave (P-QRS-T) detection was performed using the WFDB Software Package and multiresolution wavelets. Fourier and PCs were selected as time-frequency features in the ECG signal; these provided the input to the classifiers in the form of DFT and PCA coefficients. ECG beat classification was performed using binary SVM. MSVM, CSVM, and SIMCA; these were subsequently used for simultaneously classifying either four or six types of cardiac conditions. Binary SVM classification with 100% accuracy was achieved when applied on feature-reduced ECG signals from well-established databases using PCA. The CSVM algorithm and MSVM were used to classify four ECG beat types: NORMAL, PVC, APC, and FUSION or PFUS; these were from the MIT-BIH arrhythmia database (precordial lead group and limb lead II). Different numbers of Fourier coefficients were considered in order to identify the optimal number of features to be presented to the classifier. SMO was used to compute hyper-plane parameters and threshold values for both MSVM and CSVM during the classifier training phase. The best classification accuracy was achieved using fifty Fourier coefficients. With the new CSVM classifier framework, accuracies of 99%, 100%, 98%, and 99% were obtained using datasets from one, two, three, and four precordial leads, respectively. In addition, using CSVM it was possible to successfully classify four types of ECG beat signals extracted from limb lead simultaneously with 97% accuracy, a significant improvement on the 83% accuracy achieved using the MSVM classification model. In addition, further analysis of the following four beat types was made: NORMAL, PVC, SVPB, and FUSION. These signals were obtained from the European ST-T Database. Accuracies between 86% and 94% were obtained for MSVM and CSVM classification, respectively, using 100 Fourier coefficients for reconstructing individual ECG beats. Further analysis presented an effective ECG arrhythmia classification scheme consisting of PCA as a feature reduction method and a SIMCA classifier to differentiate between either four or six different types of arrhythmia. In separate studies, six and four types of beats (including NORMAL, PVC, APC, RBBB, LBBB, and FUSION beats) with time domain features were extracted from the MIT-BIH arrhythmia database and the St Petersburg INCART 12-lead Arrhythmia Database (incartdb) respectively. Between 10 and 30 PCs, coefficients were selected for reconstructing individual ECG beats in the feature selection phase. The average classification accuracy of the proposed scheme was 98.61% and 97.78 % using the limb lead and precordial lead datasets, respectively. In addition, using MSVM and SIMCA classifiers with four ECG beat types achieved an average classification accuracy of 76.83% and 98.33% respectively. The effectiveness of the proposed algorithms was finally confirmed by successfully classifying both the six beat and four beat types of signal respectively with a high accuracy ratio

    Biometrics

    Get PDF
    Biometrics uses methods for unique recognition of humans based upon one or more intrinsic physical or behavioral traits. In computer science, particularly, biometrics is used as a form of identity access management and access control. It is also used to identify individuals in groups that are under surveillance. The book consists of 13 chapters, each focusing on a certain aspect of the problem. The book chapters are divided into three sections: physical biometrics, behavioral biometrics and medical biometrics. The key objective of the book is to provide comprehensive reference and text on human authentication and people identity verification from both physiological, behavioural and other points of view. It aims to publish new insights into current innovations in computer systems and technology for biometrics development and its applications. The book was reviewed by the editor Dr. Jucheng Yang, and many of the guest editors, such as Dr. Girija Chetty, Dr. Norman Poh, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park, Dr. Sook Yoon and so on, who also made a significant contribution to the book
    • 

    corecore