15 research outputs found

    08492 Abstracts Collection -- Structured Decompositions and Efficient Algorithms

    Get PDF
    From 30.11. to 05.12.2008, the Dagstuhl Seminar 08492 ``Structured Decompositions and Efficient Algorithms \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Semiannual report, 1 October 1990 - 31 March 1991

    Get PDF
    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized

    Feature-preserving image restoration and its application in biological fluorescence microscopy

    Get PDF
    This thesis presents a new investigation of image restoration and its application to fluorescence cell microscopy. The first part of the work is to develop advanced image denoising algorithms to restore images from noisy observations by using a novel featurepreserving diffusion approach. I have applied these algorithms to different types of images, including biometric, biological and natural images, and demonstrated their superior performance for noise removal and feature preservation, compared to several state of the art methods. In the second part of my work, I explore a novel, simple and inexpensive super-resolution restoration method for quantitative microscopy in cell biology. In this method, a super-resolution image is restored, through an inverse process, by using multiple diffraction-limited (low) resolution observations, which are acquired from conventional microscopes whilst translating the sample parallel to the image plane, so referred to as translation microscopy (TRAM). A key to this new development is the integration of a robust feature detector, developed in the first part, to the inverse process to restore high resolution images well above the diffraction limit in the presence of strong noise. TRAM is a post-image acquisition computational method and can be implemented with any microscope. Experiments show a nearly 7-fold increase in lateral spatial resolution in noisy biological environments, delivering multi-colour image resolution of ~30 nm

    Doctor of Philosophy

    Get PDF
    dissertationPhysical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom

    Variational models and numerical algorithms for selective image segmentation

    Get PDF
    This thesis deals with the numerical solution of nonlinear partial differential equations and their application in image processing. The differential equations we deal with here arise from the minimization of variational models for image restoration techniques (such as denoising) and recognition of objects techniques (such as segmentation). Image denoising is a technique aimed at restoring a digital image that has been contaminated by noise while segmentation is a fundamental task in image analysis responsible for partitioning an image as sub-regions or representing the image into something that is more meaningful and easier to analyze such as extracting one or more specific objects of interest in images based on relevant information or a desired feature. Although there has been a lot of research in the restoration of images, the performance of such methods is still poor, especially when the images have a high level of noise or when the algorithms are slow. Task of the segmentation is even more challenging problem due to the difficulty of delineating, even manually, the contours of the objects of interest. The problems are often due to low contrast, fuzzy contours, similar intensities with adjacent objects, or the objects to be extracted having no real contours. The first objective of this work is to develop fast image restoration and segmentation methods which provide better denoising and fast and robust performance for image segmentation. The contribution presented here is the development of a restarted homotopy analysis method which has been designed to be easily adaptable to various types of image processing problems. As a second research objective we propose a framework for image selective segmentation which partitions an image based on the information known in advance of the object/objects to be extracted (for example the left kidney is the target to be extracted in a CT image and the prior knowledge is a few markers in this object of interest). This kind of segmentation appears especially in medical applications. Medical experts usually estimate and manually draw the boundaries of the organ/organs based on their experience. Our aim is to introduce automatic segmentation of the object of interest as a contribution not only to the way doctors and surgeons diagnose and operate but to other fields as well. The proposed methods showed success in segmenting different objects and perform well in different types of images not only in two-dimensional but in three-dimensional images as well

    3D object reconstruction using computer vision : reconstruction and characterization applications for external human anatomical structures

    Get PDF
    Tese de doutoramento. Engenharia Informática. Faculdade de Engenharia. Universidade do Porto. 201

    ANALYSIS OF ITERATIVE METHODS FOR THE SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH APPLICATIONS TO THE HELMHOLTZ PROBLEM

    Get PDF
    This thesis is concerned with the numerical solution of boundary integral equations and the numerical analysis of iterative methods. In the first part, we assume the boundary to be smooth in order to work with compact operators; while in the second part we investigate the problem arising from allowing piecewise smooth boundaries. Although in principle most results of the thesis apply to general problems of reformulating boundary value problems as boundary integral equations and their subsequent numerical solutions, we consider the Helmholtz equation arising from acoustic problems as the main model problem. In Chapter 1, we present the background material of reformulation of Helmhoitz boundary value problems into boundary integral equations by either the indirect potential method or the direct method using integral formulae. The problem of ensuring unique solutions of integral equations for exterior problems is specifically discussed. In Chapter 2, we discuss the useful numerical techniques for solving second kind integral equations. In particular, we highlight the superconvergence properties of iterated projection methods and the important procedure of Nystrom interpolation. In Chapter 3, the multigrid type methods as applied to smooth boundary integral equations are studied. Using the residual correction principle, we are able to propose some robust iterative variants modifying the existing methods to seek efficient solutions. In Chapter 4, we concentrate on the conjugate gradient method and establish its fast convergence as applied to the linear systems arising from general boundary element equations. For boundary integral equalisations on smooth boundaries we have observed, as the underlying mesh sizes decrease, faster convergence of multigrid type methods and fixed step convergence of the conjugate gradient method. In the case of non-smooth integral boundaries, we first derive the singular forms of the solution of boundary integral solutions for Dirichlet problems and then discuss the numerical solution in Chapter 5. Iterative methods such as two grid methods and the conjugate gradient method are successfully implemented in Chapter 6 to solve the non-smooth integral equations. The study of two grid methods in a general setting and also much of the results on the conjugate gradient method are new. Chapters 3, 4 and 5 are partially based on publications [4], [5] and [35] respectively.Department of Mathematics and Statistics, Polytechnic South Wes

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    corecore