552 research outputs found

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Flip Distance Between Triangulations of a Planar Point Set is APX-Hard

    Full text link
    In this work we consider triangulations of point sets in the Euclidean plane, i.e., maximal straight-line crossing-free graphs on a finite set of points. Given a triangulation of a point set, an edge flip is the operation of removing one edge and adding another one, such that the resulting graph is again a triangulation. Flips are a major way of locally transforming triangular meshes. We show that, given a point set SS in the Euclidean plane and two triangulations T1T_1 and T2T_2 of SS, it is an APX-hard problem to minimize the number of edge flips to transform T1T_1 to T2T_2.Comment: A previous version only showed NP-completeness of the corresponding decision problem. The current version is the one of the accepted manuscrip

    Reconstruction of Orthogonal Polyhedra

    Get PDF
    In this thesis I study reconstruction of orthogonal polyhedral surfaces and orthogonal polyhedra from partial information about their boundaries. There are three main questions for which I provide novel results. The first question is "Given the dual graph, facial angles and edge lengths of an orthogonal polyhedral surface or polyhedron, is it possible to reconstruct the dihedral angles?" The second question is "Given the dual graph, dihedral angles and edge lengths of an orthogonal polyhedral surface or polyhedron, is it possible to reconstruct the facial angles?" The third question is "Given the vertex coordinates of an orthogonal polyhedral surface or polyhedron, is it possible to reconstruct the edges and faces, possibly after rotating?" For the first two questions, I show that the answer is "yes" for genus-0 orthogonal polyhedra and polyhedral surfaces under some restrictions, and provide linear time algorithms. For the third question, I provide results and algorithms for orthogonally convex polyhedra. Many related problems are studied as well
    corecore