88 research outputs found

    A joint OFDM PAPR reduction and data decoding scheme with no SI estimation

    Get PDF
    The need for side information (SI) estimation poses a major challenge when selected mapping (SLM) is implemented to reduce peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. Recent studies on pilot-assisted SI estimation procedures suggest that it is possible to determine the SI without the need for SI transmission. However, SI estimation adds to computational complexity and implementation challenges of practical SLM-OFDM receivers. To address these technical issues, this paper presents the use of a pilot-assisted cluster-based phase modulation and demodulation procedure called embedded coded modulation (ECM). The ECM technique uses a slightly modified SLM approach to reduce PAPR and to enable data recovery with no SI transmission and no SI estimation. In the presence of some non-linear amplifier distortion, it is shown that the ECM method achieves similar data decoding performance as conventional SLM-OFDM receiver that assumed a perfectly known SI and when the SI is estimated using a frequency-domain correlation approach. However, when the number of OFDM subcarriers is small and due to the clustering in ECM, the modified SLM produces a smaller PAPR reduction gain compared with conventional SLM

    Enhancement of Selective Mapping Technique for Peak-To-Average Power Ratio Reduction in OFDM using Normalized Hilbert Matrix

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is good multicarrier transmission system used for broadband wireless communication systems owing to it is numerous benefits such as high bandwidth efficiency, high transmission rate, and robustness against multi path problem. However, one of the hitches of OFDM high Peak-to-Average Power Ratio (PAPR) of the transmitted signal, which results in signal distortion and reduced power amplifier efficiency. Selective Mapping (SLM) is attractive distortion less method for PAPR reduction. The performance of this technique in reducing the PAPR is largely affected by the magnitude of phase rotation vectors. It also requires to  transmit the selected phase rotation vectors that produce the signal with the lowest PAPR to the receiver end for the recovery of the original data. In this paper, two normalization procedures in conjunction with the Hilbert matrix are used to obtain phase rotation vectors for the SLM technique to further reduce the PAPR value. The reduction of PAPR is desirable in order to have a better power efficiency of the amplifier. The simulation results demonstrated that the enhanced SLM technique using normalized Hilbert matrix achieved a better PAPR reduction compared to SLM using Hilbert matrix without normalization with 14.0%, and 14.0%  percentage improvement. Another benefit of this method is that the matrix can be generated at the receiver end to obtain the data signal, thus eliminating the transmission of side information with the original data

    A low complexity SI sequence estimator for pilot-aided SLM–OFDM systems

    Get PDF
    Selected mapping (SLM) is a well-known method for reducing peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. However, as a consequence of implementing SLM, OFDM receivers often require estimation of some side information (SI) in order to achieve successful data recovery. Existing SI estimation schemes have very high computational complexities that put additional constraints on limited resources and increase system complexity. To address this problem, an alternative SLM approach that facilitates estimation of SI in the form of phase detection is presented. Simulations show that this modified SLM approach produces similar PAPR reduction performance when compared to conventional SLM. With no amplifier distortion and in the presence of non-linear power amplifier distortion, the proposed SI estimation approach achieves similar data recovery performance as both standard SLM–OFDM (with perfect SI estimation) and also when SI estimation is implemented through the use of an existing frequency-domain correlation (FDC) decision metric. In addition, the proposed method significantly reduces computational complexity compared with the FDC scheme and an ML estimation scheme

    PAPR Reduction Method based on In-phase/Quadrature Data Symbol Components in MIMO-OFDM Systems

    Get PDF
    To overcome unpredictable spikes in the peak-toaverage power ratio (PAPR) in the presence of an orthogonal frequency-division multiplexing (OFDM) for multi-input-multioutput (MIMO) systems, implementation of a new SLM scheme is presented in this paper, which is extended from our previous study of IQ-SLM in SISO-OFDM system. In each transmit antenna, both real and imaginary parts of the base-band data symbol were modified independently using a corresponding phase element within a commonly generated phase vector, instead of modifying the complex data symbol as a single component. After applying an inverse fast Fourier transform (IFFT) for the real, imaginary, and original base-band vectors, the minimum PAPR component was observed. Therefore, the phase vector that introduced the minimal PAPR was considered to convert the original data block for transmission. This technique is called the In-phase/Quadrature-SLM (IQ-SLM) scheme. In this proposal, only U phase vectors were generated to treat all Nt data blocks, simultaneously, unlike the conventional MIMO-SLM techniques which generate UNt candidate phase blocks. The thing which, in turn, can be considered as a further computational complexity reduction, specifically in data-phase conversion stages. As a result, in terms of the complementary cumulative distribution function of PAPR performance(CCDF-PAPR), the proposal achieved a greater decibel reduction than conventional SLM methods such as dSLM, oSLM, and sSLM, at different subcarrier lengths N, candidate phase vectors U, transmit antennas Nt. Also, it shows a comparable BER performances over the dSLM scheme referencing to the theoretical curves, in the case where Nt ≤ Nr for both zero-forcing (ZF) and ZF with vertical Bell laboratories layered space-time (V-BLAST) detector

    NORM Technique based PAPR Reduction in MC-CDMA Systems

    Get PDF
    Multicarrier code division multiple access (MC-CDMA) is one of the promising technologies for future-generation wireless networks. It offers high data rates, protection against frequency-selective fading and efficient utilization of the spectrum. The peak to average power ratio (PAPR) is very high in MCCDMA systems. The partial transmit sequence technique (PTS) and the selective mapping technique (SLM) reduce the PAPR with more computational complexity. In this study, the NORM technique was used for PAPR reduction in MC-CDMA systems. The performance of NORM was analyzed with PTS and SLM in terms of cumulative complementary distribution, power saving gain, amplifier efficiency, computational complexity and bit error rate. Simulation results showed that NORM has better PAPR reduction with less computational complexity

    On PAPR Reduction Techniques in Mobile WiMAX

    Get PDF
    • …
    corecore