437 research outputs found

    Duplexing methods for PON systems using multimode fiber with multicarrier transmission

    Get PDF
    Deploying a PON using multimode fiber in the access network is viewed as a costeffective solution. However, a multimode fiber link exhibits a time-dispersive nature. To cope with this problem, an OFDM transmission method is used. In this work, a comparison study on several duplexing methods for this system was performed to decide upon the recommended method for the system. The choices that were examined are: TDD, FDD, WDD and SDD (time-, frequency-, wavelength- and space- division duplexing). Based on the following criteria: channel characterization, flexible bandwidth proportion, crosstalk & beat noise impairment, components-saving and system capacity, it was concluded that SDD is the most feasible one among other choices, immediately followed by WDD

    Digital Pre-distortion for Interference Reduction in Dynamic Spectrum Access Networks

    Get PDF
    Given the ever increasing reliance of today’s society on ubiquitous wireless access, the paradigm of dynamic spectrum access (DSA) as been proposed and implemented for utilizing the limited wireless spectrum more efficiently. Orthogonal frequency division multiplexing (OFDM) is growing in popularity for adoption into wireless services employing DSA frame- work, due to its high bandwidth efficiency and resiliency to multipath fading. While these advantages have been proven for many wireless applications, including LTE-Advanced and numerous IEEE wireless standards, one potential drawback of OFDM or its non-contiguous variant, NC-OFDM, is that it exhibits high peak-to-average power ratios (PAPR), which can induce in-band and out-of-band (OOB) distortions when the peaks of the waveform enter the compression region of the transmitter power amplifier (PA). Such OOB emissions can interfere with existing neighboring transmissions, and thereby severely deteriorate the reliability of the DSA network. A performance-enhancing digital pre-distortion (DPD) technique compensating for PA and in-phase/quadrature (I/Q) modulator distortions is proposed in this dissertation. Al- though substantial research efforts into designing DPD schemes have already been presented in the open literature, there still exists numerous opportunities to further improve upon the performance of OOB suppression for NC-OFDM transmission in the presence of RF front-end impairments. A set of orthogonal polynomial basis functions is proposed in this dissertation together with a simplified joint DPD structure. A performance analysis is presented to show that the OOB emissions is reduced to approximately 50 dBc with proposed algorithms employed during NC-OFDM transmission. Furthermore, a novel and intuitive DPD solution that can minimize the power regrowth at any pre-specified frequency in the spurious domain is proposed in this dissertation. Conventional DPD methods have been proven to be able to effectively reduce the OOB emissions that fall on top of adjacent channels. However more spectral emissions in more distant frequency ranges are generated by employing such DPD solutions, which are potentially in violation of the spurious emission limit. At the same time, the emissions in adjacent channel must be kept under the OOB limit. To the best of the author’s knowledge, there has not been extensive research conducted on this topic. Mathematical derivation procedures of the proposed algorithm are provided for both memoryless nonlinear model and memory-based nonlinear model. Simulation results show that the proposed method is able to provide a good balance of OOB emissions and emissions in the far out spurious domain, by reducing the spurious emissions by 4-5 dB while maintaining the adjacent channel leakage ratio (ACLR) improvement by at least 10 dB, comparing to the PA output spectrum without any DPD

    Filter Bank Multicarrier for Massive MIMO

    Full text link
    This paper introduces filter bank multicarrier (FBMC) as a potential candidate in the application of massive MIMO communication. It also points out the advantages of FBMC over OFDM (orthogonal frequency division multiplexing) in the application of massive MIMO. The absence of cyclic prefix in FBMC increases the bandwidth efficiency. In addition, FBMC allows carrier aggregation straightforwardly. Self-equalization, a property of FBMC in massive MIMO that is introduced in this paper, has the impact of reducing (i) complexity; (ii) sensitivity to carrier frequency offset (CFO); (iii) peak-to-average power ratio (PAPR); (iv) system latency; and (v) increasing bandwidth efficiency. The numerical results that corroborate these claims are presented.Comment: 7 pages, 6 figure

    NASA Unmanned Aircraft (UA) Control and Non-Payload Communication (CNPC) System Waveform Trade Studies

    Get PDF
    Unmanned Aircraft Systems (UAS) represent a new capability that will provide a variety of services in the government (public) and commercial (civil) aviation sectors. The growth of this potential industry has not yet been realized due to the lack of a common understanding of what is required to safely operate UAS in the National Airspace System (NAS). To address this deficiency, NASA has established a project called UAS Integration in the NAS (UAS in the NAS), under the Integrated Systems Research Program (ISRP) of the Aeronautics Research Mission Directorate (ARMD). This project provides an opportunity to transition concepts, technology, algorithms, and knowledge to the Federal Aviation Administration (FAA) and other stakeholders to help them define the requirements, regulations, and issues for routine UAS access to the NAS. The safe, routine, and efficient integration of UAS into the NAS requires new radio frequency (RF) spectrum allocations and a new data communications system which is both secure and scalable with increasing UAS traffic without adversely impacting the Air Traffic Control (ATC) communication system. These data communications, referred to as Control and Non-Payload Communications (CNPC), whose purpose is to exchange information between the unmanned aircraft and the ground control station to ensure safe, reliable, and effective unmanned aircraft flight operation. A Communications Subproject within the UAS in the NAS Project has been established to address issues related to CNPC development, certification and fielding. The focus of the Communications Subproject is on validating and allocating new RF spectrum and data link communications to enable civil UAS integration into the NAS. The goal is to validate secure, robust data links within the allocated frequency spectrum for UAS. A vision, architectural concepts, and seed requirements for the future commercial UAS CNPC system have been developed by RTCA Special Committee 203 (SC-203) in the process of determining formal recommendations to the FAA in its role provided for under the Federal Advisory Committee Act. NASA intends to conduct its research and development in keeping with this vision and associated architectural concepts. The prototype communication systems developed and tested by NASA will be used to validate and update the initial SC-203 requirements in order to provide a foundation for SC-203's Minimum Aviation System Performance Standards (MASPS)

    Evolution of millimeter-wave communications toward next generation in wireless technologies

    Get PDF
    Next generation in wireless communication systems being deployed in the world, 5G/6G mobile and wireless communication technologies has been widely studied. This work clarifies that Millimeter-Wave (mm-Wave) is in its early stages and will be driven by consumers who keep on desire higher information rates for the consumption of media. Millimeter-Wave innovation represents for next generation cellular technology and includes a wide range of advanced features which make next innovation most dominant technology in near future, these abilities incorporate high achievable information rates in addition to lower delays and constant connectivity on wireless devices

    Frequency Spreading Equalization in Multicarrier Massive MIMO

    Full text link
    Application of filter bank multicarrier (FBMC) as an effective method for signaling over massive MIMO channels has been recently proposed. This paper further expands the application of FBMC to massive MIMO by applying frequency spreading equalization (FSE) to these channels. FSE allows us to achieve a more accurate equalization. Hence, higher number of bits per symbol can be transmitted and the bandwidth of each subcarrier can be widened. Widening the bandwidth of each subcarrier leads to (i) higher bandwidth efficiency; (ii) lower complexity; (iii) lower sensitivity to carrier frequency offset (CFO); (iv) reduced peak-to-average power ratio (PAPR); and (iv) reduced latency. All these appealing advantages have a direct impact on the digital as well as analog circuitry that is needed for the system implementation. In this paper, we develop the mathematical formulation of the minimum mean square error (MMSE) FSE for massive MIMO systems. This analysis guides us to decide on the number of subcarriers that will be sufficient for practical channel models.Comment: Accepted in IEEE ICC 2015 - Workshop on 5G & Beyond - Enabling Technologies and Application

    Survey of Filter Bank Multicarrier (FBMC) as an efficient waveform for 5G

    Get PDF
    Filter bank multicarrier is a multicarrier scheme. It is a modulation technique to overcome the Inter Symbol Interference (ISI) and Inter Carrier Interference (ICI). The inter symbol interference is a big challenges in network systems. FBMC is a modification of orthogonal frequency division multiplexing (OFDM). In OFDM cyclic prefix are used for robustness of signal, but by using cyclic prefix orthogonal frequency division multiplexing has some drawbacks. To overcome the drawback of OFDM, use the Filter Bank Multicarrier (FBMC). It provides the efficient bandwidth. To handle this situation modulation techniques are used and other new methods will be used in future. One of them is Filter Bank Multicarrier; it provides high efficiency rather than OFDM
    corecore