3,809 research outputs found

    Typical Geometry, Second-Order Properties and Central Limit Theory for Iteration Stable Tessellations

    Full text link
    Since the seminal work of Mecke, Nagel and Weiss, the iteration stable (STIT) tessellations have attracted considerable interest in stochastic geometry as a natural and flexible yet analytically tractable model for hierarchical spatial cell-splitting and crack-formation processes. The purpose of this paper is to describe large scale asymptotic geometry of STIT tessellations in Rd\mathbb{R}^d and more generally that of non-stationary iteration infinitely divisible tessellations. We study several aspects of the typical first-order geometry of such tessellations resorting to martingale techniques as providing a direct link between the typical characteristics of STIT tessellations and those of suitable mixtures of Poisson hyperplane tessellations. Further, we also consider second-order properties of STIT and iteration infinitely divisible tessellations, such as the variance of the total surface area of cell boundaries inside a convex observation window. Our techniques, relying on martingale theory and tools from integral geometry, allow us to give explicit and asymptotic formulae. Based on these results, we establish a functional central limit theorem for the length/surface increment processes induced by STIT tessellations. We conclude a central limit theorem for total edge length/facet surface, with normal limit distribution in the planar case and non-normal ones in all higher dimensions.Comment: 51 page
    • …
    corecore