693 research outputs found

    Distance-regular graphs

    Get PDF
    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN' [Brouwer, A.E., Cohen, A.M., Neumaier, A., Distance-Regular Graphs, Springer-Verlag, Berlin, 1989] was written.Comment: 156 page

    On the decomposition threshold of a given graph

    Get PDF
    We study the FF-decomposition threshold δF\delta_F for a given graph FF. Here an FF-decomposition of a graph GG is a collection of edge-disjoint copies of FF in GG which together cover every edge of GG. (Such an FF-decomposition can only exist if GG is FF-divisible, i.e. if e(F)e(G)e(F)\mid e(G) and each vertex degree of GG can be expressed as a linear combination of the vertex degrees of FF.) The FF-decomposition threshold δF\delta_F is the smallest value ensuring that an FF-divisible graph GG on nn vertices with δ(G)(δF+o(1))n\delta(G)\ge(\delta_F+o(1))n has an FF-decomposition. Our main results imply the following for a given graph FF, where δF\delta_F^\ast is the fractional version of δF\delta_F and χ:=χ(F)\chi:=\chi(F): (i) δFmax{δF,11/(χ+1)}\delta_F\le \max\{\delta_F^\ast,1-1/(\chi+1)\}; (ii) if χ5\chi\ge 5, then δF{δF,11/χ,11/(χ+1)}\delta_F\in\{\delta_F^{\ast},1-1/\chi,1-1/(\chi+1)\}; (iii) we determine δF\delta_F if FF is bipartite. In particular, (i) implies that δKr=δKr\delta_{K_r}=\delta^\ast_{K_r}. Our proof involves further developments of the recent `iterative' absorbing approach.Comment: Final version, to appear in the Journal of Combinatorial Theory, Series

    Embedding rainbow trees with applications to graph labelling and decomposition

    Get PDF
    A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct colours. The study of rainbow subgraphs goes back more than two hundred years to the work of Euler on Latin squares. Since then rainbow structures have been the focus of extensive research and have found applications in the areas of graph labelling and decomposition. An edge-colouring is locally k-bounded if each vertex is contained in at most k edges of the same colour. In this paper we prove that any such edge-colouring of the complete graph Kn contains a rainbow copy of every tree with at most (1−o(1))n/k vertices. As a locally k-bounded edge-colouring of Kn may have only (n−1)/k distinct colours, this is essentially tight. As a corollary of this result we obtain asymptotic versions of two long-standing conjectures in graph theory. Firstly, we prove an asymptotic version of Ringel's conjecture from 1963, showing that any n-edge tree packs into the complete graph K(2n+o(n)) to cover all but o(n^2) of its edges. Secondly, we show that all trees have an almost-harmonious labelling. The existence of such a labelling was conjectured by Graham and Sloane in 1980. We also discuss some additional applications

    Locally finite graphs with ends: A topological approach, I. Basic theory

    Get PDF
    AbstractThis paper is the first of three parts of a comprehensive survey of a newly emerging field: a topological approach to the study of locally finite graphs that crucially incorporates their ends. Topological arcs and circles, which may pass through ends, assume the role played in finite graphs by paths and cycles. The first two parts of the survey together provide a suitable entry point to this field for new readers; they are available in combined form from the ArXiv [18]. They are complemented by a third part [28], which looks at the theory from an algebraic-topological point of view.The topological approach indicated above has made it possible to extend to locally finite graphs many classical theorems of finite graph theory that do not extend verbatim. While the second part of this survey [19] will concentrate on those applications, this first part explores the new theory as such: it introduces the basic concepts and facts, describes some of the proof techniques that have emerged over the past 10 years (as well as some of the pitfalls these proofs have in stall for the naive explorer), and establishes connections to neighbouring fields such as algebraic topology and infinite matroids. Numerous open problems are suggested
    corecore