126 research outputs found

    Integration of Hybrid Passive Optical Networks (PON) with Radio over Fiber (RoF)

    Get PDF
    A cost effective, robust, and high capacity access network necessitated to meet the mounting customer demands for bandwidth-desirous services. A remarkable evolution of access networks is observed both in wired and wireless, predominantly driven by ever-changing bandwidth requirements. A wireless connection releases the end user from the restrictions of a physical link to a network that results in mobility, flexibleness, and ease of use. Whereas, optical networks offer immense amount of bandwidth that appease the most bandwidth voracious customers compared to bandwidth limited wireless networks. The integration of wired and wireless domains in the access landscape that presents a technical analysis of optical architectures suitable to support radio over fiber (RoF) is the objective of this chapter. Investigate the main trends that drive the merger of fiber and wireless technologies in access networks. Moreover, study the primary terms and the particular transmission features of integrated fiber-radio links to form a well-defined classification of hybrid systems and techniques. This work also recognizes the major problems for realization of RoF systems and examines the limitation, advantages, and diversity of integrated RoF-PON technology

    Orthogonal chirp-division multiplexing for performance enhanced optical/millimeter-wave 5G/6G communications

    Get PDF
    Orthogonal chirp-division multiplexing is deployed as a novel waveform in an optical/millimeter-wave system. Enhanced channel estimation gives a 5-dB receiver sensitivity improvement over a conventional OFDM implementation, and compatibility with 256-QAM at 60-GHz is experimentally demonstrated

    Converged wireline and wireless signal distribution in optical fiber access networks

    Get PDF

    Analog radio over fiber solutions for multi-band 5g systems

    Get PDF
    This study presents radio over fiber (RoF) solutions for the fifth-generation (5G) of wireless networks. After the state of the art and a technical background review, four main contributions are reported. The first one is proposing and investigating a RoF technique based on a dual-drive Mach-Zehnder modulator (DD-MZM) for multi-band mobile fronthauls, in which two radiofrequency (RF) signals in the predicted 5G bands individually feed an arm of the optical modulator. Experimental results demonstrate the approach enhances the RF interference mitigation and can prevail over traditional methods. The second contribution comprises the integration of a 5G transceiver, previously developed by our group, in a passive optical network (PON) using RoF technology and wavelength division multiplexing (WDM) overlay. The proposed architecture innovates by employing DD-MZM and enables to simultaneously transport baseband and 5G candidate RF signals in the same PON infrastructure. The proof-of-concept includes the transmission of a generalized frequency division multiplexing (GFDM) signal generated by the 5G transceiver in the 700 MHz band, a 26 GHz digitally modulated signal as a millimeter-waves 5G band, and a baseband signal from an gigabit PON (GPON). Experimental results demonstrate the 5G transceiver digital performance when using RoF technology for distributing the GFDM signal, as well as Gbit/s throughput at 26 GHz. The third contribution is the implementation of a flexible-waveform and multi-application fiber-wireless (FiWi) system toward 5G. Such system includes the FiWi transmission of the GFDM and filtered orthogonal frequency division multiplexing (F-OFDM) signals at 788 MHz, toward long-range cells for remote or rural mobile access, as well as the recently launched 5G NR standard in microwave and mm-waves, aiming enhanced mobile broadband indoor and outdoor applications. Digital signal processing (DSP) is used for selecting the waveform and linearizing the RoF link. Experimental results demonstrate the suitability of the proposed solution to address 5G scenarios and requirements, besides the applicability of using existent fiber-to-the-home (FTTH) networks from Internet service providers for implementing 5G systems. Finally, the fourth contribution is the implementation of a multi-band 5G NR system with photonic-assisted RF amplification (PAA). The approach takes advantage of a novel PAA technique, based on RoF technology and four-wave mixing effect, that allows straightforward integration to the transport networks. Experimental results demonstrate iv uniform and stable 15 dB wideband gain for Long Term Evolution (LTE) and three 5G signals, distributed in the frequency range from 780 MHz to 26 GHz and coexisting in the mobile fronthaul. The obtained digital performance has efficiently met the Third-Generation Partnership Project (3GPP) requirements, demonstrating the applicability of the proposed approach for using fiber-optic links to distribute and jointly amplify LTE and 5G signals in the optical domain.Agência 1Este trabalho apresenta soluções de rádio sobre fibra (RoF) para aplicações em redes sem fio de quinta geração (5G), e inclui quatro contribuições principais. A primeira delas refere-se à proposta e investigação de uma técnica de RoF baseada no modulador eletroóptico de braço duplo, dual-drive Mach-Zehnder (DD-MZM), para a transmissão simultânea de sinais de radiofrequência (RF) em bandas previstas para redes 5G. Resultados experimentais demonstram que o uso do DD-MZM favorece a ausência de interferência entre os sinais de RF transmitidos. A segunda contribuição trata da integração de um transceptor de RF, desenvolvido para aplicações 5G e apto a prover a forma de onda conhecida como generalized frequency division multiplexing (GFDM), em uma rede óptica passiva (PON) ao utilizar RoF e multiplexação por divisão de comprimento de onda (WDM). A arquitetura proposta permite transportar, na mesma infraestrutura de rede, sinais em banda base e de radiofrequência nas faixas do espectro candidatas para 5G. A prova de conceito inclui a distribuição conjunta de três tipos de sinais: um sinal GFDM na banda de 700 MHz, proveniente do transceptor desenvolvido; um sinal digital na frequência de 26 GHz, assumindo a faixa de ondas milimétricas; sinais em banda base provenientes de uma PON dedicada ao serviço de Internet. Resultados experimentais demonstram o desempenho do transceptor de RF ao utilizar a referida arquitetura para distribuir sinais GFDM, além de taxas de transmissão de dados da ordem de Gbit/s na faixa de 26 GHz. A terceira contribuição corresponde à implementação de um sistema fibra/rádio potencial para redes 5G, operando inclusive com o padrão ―5G New Radio (5G NR)‖ nas faixas de micro-ondas e ondas milimétricas. Tal sistema é capaz de prover macro células na banda de 700 MHz para aplicações de longo alcance e/ou rurais, utilizando sinais GFDM ou filtered orthogonal frequency division multiplexing (F-OFDM), assim como femto células na banda de 26 GHz, destinada a altas taxas de transmissão de dados para comunicações de curto alcance. Resultados experimentais demonstram a aplicabilidade da solução proposta para redes 5G, além da viabilidade de utilizar redes ópticas pertencentes a provedores de Internet para favorecer sistemas de nova geração. Por fim, a quarta contribuição trata da implementação de um sistema 5G NR multibanda, assistido por amplificação de RF no domínio óptico. Esse sistema faz uso de um novo método de amplificação, baseado no efeito não linear da mistura de quatro ondas, que vi permite integração direta em redes de transporte envolvendo rádio sobre fibra. Resultados experimentais demonstram ganho de RF igual a 15 dB em uma ampla faixa de frequências (700 MHz até 26 GHz), atendendo simultaneamente tecnologias de quarta e quinta geração. O desempenho digital obtido atendeu aos requisitos estabelecidos pela 3GPP (Third-Generation Partnership Project), indicando a aplicabilidade da solução em questão para distribuir e conjuntamente amplificar sinais de RF em enlaces de fibra óptica

    Radio over fibre distribution systems for ultra-wide band and millimetre wave applications

    Get PDF
    Short range wireless technology such as ultra-wideband (UWB) and 60 GHz millimetre wave (mm-wave) play a key role for wireless connectivity in indoor home, office environment or large enclosed public areas. UWB has been allocated at the frequency band 3.1-10.6 GHz with an emission power below -41.3 dBm. Mm-wave signals around 60 GHz have also attracted much attention to support high-speed data for short range wireless applications. The wide bandwidth and high allowable transmit power at 60 GHz enable multi-Gbps wireless transmission over typical indoor distances. Radio-over-fibre (RoF) systems are used to extend the propagation distance of both UWB and mm-wave signals over hundred of meters inside a building. UWB or mm-wave signals over fibre can be generated first at the central office before being distributed to the remote access points through optical fibre. In this work, we investigate two new techniques to generate and distribute UWB signals. These techniques are based on generating Gaussian pulse position modulation (PPM) using a gain switched laser (GSL). The simulation and experimental results have been carried out to show the suitability of employing gain switching in UWB over fibre systems (UWBoF) to develop a reliable, simple, and low cost technique for distributing UWB pulses. The second part of this work proposes two configurations for optical mm-wave generation and transmission of 3 Gbps downstream data based on GSL. We investigate the distribution of these two methods over fibre with wireless link, and demonstrate the system simplicity and cost efficiency for mm-wave over fibre systems. Both configurations are simulated to verify our obtained results and show system performance at higher bit rates. In the third part, we generate phase modulated mm-waves by using an external injection of a modulated light source into GSL. The performance of this system is experimentally investigated and simulated for different fiber links

    Photonic techniques for indoor spatially-multiplexed wireless communication

    Get PDF

    Microwave Photonic Applications - From Chip Level to System Level

    Get PDF
    Die Vermischung von Mikrowellen- und optischen Technologien – Mikrowellenphotonik – ist ein neu aufkommendes Feld mit hohem Potential. Durch die Nutzung der Vorzüge beider Welten hat die Mikrowellenphotonik viele Anwendungsfälle und ist gerade erst am Beginn ihrer Erfolgsgeschichte. Der Weg für neue Konzepte, neue Komponenten und neue Anwendungen wird dadurch geebnet, dass ein höherer Grad an Integration sowie neue Technologien wie Silicon Photonics verfügbar sind. In diesem Werk werden zuerst die notwendigen grundlegenden Basiskomponenten – optische Quelle, elektro-optische Wandlung, Übertragungsmedium und opto-elektrische Wandlung – eingeführt. Mithilfe spezifischer Anwendungsbeispiele, die von Chipebene bis hin zur Systemebene reichen, wird der elektrooptische Codesign-Prozess veranschaulicht. Schließlich werden zukünftige Ausrichtungen wie die Unterstützung von elektrischen Trägern im Millimeterwellen- und THz-Bereich sowie Realisierungsoptionen in integrierter Optik und Nanophotonik diskutiert.The hybridization between microwave and optical technologies – microwave photonics – is an emerging field with high potential. Benefitting from the best of both worlds, microwave photonics has many use cases and is just at the beginning of its success story. The availability of a higher degree of integration and new technologies such as silicon photonics paves the way for new concepts, new components and new applications. In this work, first, the necessary basic building blocks – optical source, electro-optical conversion, transmission medium and opto-electrical conversion – are introduced. With the help of specific application examples ranging from chip level to system level, the electro-optical co-design process for microwave photonic systems is illustrated. Finally, future directions such as the support of electrical carriers in the millimeter wave and THz range and realization options in integrated optics and nanophotonics are discussed

    Photonics Based Techniques for Millimeter-Wave Generation, Transmission, and Multiplexing

    Get PDF
    Millimeter-waves have found wide application in various fields. In this research, MMW generation, transmitting and receiving, multiplexing techniques are investigated. Three ways of MMW generation based on photonics are discussed. By modeling these three techniques and applying different situations of transmission links up to 100 km and fixed bit rate of 2.5 Gb/s, different results were found and compared to each other. Also, the effect of chromatic dispersion is discussed in addition to the phase conjugation way of dispersion compensation. Dispersion compensation based on phase conjugation was also simulated and applied to OSSB millimeter-wave generator in order to transmit the generated signals through 100 km of fiber and data rate of 10 Gb/s without dispersion effect

    Optical techniques for broadband in-building networks

    Get PDF
    Optical fibres, which can easily handle any bandwidth demand, have been rolled out to more than 32 million consumer’s homes and professional buildings worldwide up to 2010. The basic technological and economical challenges of fibre-to-the-home (FTTH) has been solved. The current FTTH technology can now providing baseband Gbit Ethernet and high definition TV services to the gates of homes. Thus, the bottleneck for delivery of broadband services to the end users is shifting from the access network to the in-building network. In the meantime, the need for high-capacity transmission between devices inside the building, e.g. between desktop PC and data services, are also rapidly increase. How to bring high bandwidth to the mobile terminals such as laptops, PDAs or cell phones as well as to the fixed terminals such as desktop PCs and HDTV equipment in an all-in-one network infrastructure is a challenge we are facing. Building on the flexibility of the wireless access networks and the latent vast bandwidth of a fibre infrastructure, radio-over-fibre (RoF) techniques have been proposed as a cost-effective solution to the future integrated broadband services in in-building networks. This thesis investigates techniques to deliver high data rate wireless services via in-building networks: high capacity RoF links employing optical frequency multiplication (OFM) and sub-carrier multiplexing (SCM) techniques, with single- or multi-carrier signal formats. The orthogonal frequency division multiplexing (OFDM) format is investigated for the RoF transmission system, particularly with regard to the optical system nonlinearity. For low-cost short-range optical backbone networks, RoF transmission over large-core diameter plastic optical fibre (POF) links has been studied, including the transmission of the WiMedia-compliant multiband OFDM UWB signal over bandwidth-limited large-core POF as well as a full-duplex bi-directional UWB transmission over POF. In order to improve the functionalities for delivery of wireless services of in-building networks, techniques to introduce flexibility into the network architecture and to create dynamic capacity allocation have been investigated. By employing optical switching techniques based on optical semiconductor amplifiers (SOA), an optically routed RoF system has been studied. The dynamic capacity allocation is addressed by investigating one-dimensional and two-dimensional routing using electrical SCM and optical wavelengths. In addition, next to RoF networking, this thesis explores techniques for wired delivery of baseband high capacity services over POF links by employing a multi-level signal modulation format, in particular discrete multi-tone (DMT) modulation. Transmission of 10 Gbit/s data over 1 mm core diameter PMMA POF links is demonstrated, as a competitor to more expensive fibre solutions such as silica single and multimode fibre. A record transmission rate of more than 40 Gbit/s is presented for POF whose core diameter is comparable with silica multimode fibre. Finally, from the network perspective, the convergence of wired and wireless multi-standard services into a single fibre-based infrastructure has been studied. Techniques have been designed and demonstrated for in-building networks, which can convey both high capacity baseband services and broadband radio frequency (RF) services over a POF backbone link. The multi-standard RoF signals carry different wireless services at different radio frequencies and with different bandwidths, including WiFi, WiMax, UMTS and UWB. System setups to carry them together over the same multimode optical fibre based network have been designed and experimentally shown. All the concepts, designs and system experiments presented in this thesis underline the strong potential of multimode (silica and plastic) optical fibre techniques for the delivery of broadband services to wired and wireless devices in in-building networks, in order to extend to the end user the benefits of the broadband FTTH networks which are being installed and deployed worldwide
    corecore