1,261 research outputs found

    Genuinely multipartite entangled states and orthogonal arrays

    Full text link
    A pure quantum state of N subsystems with d levels each is called k-multipartite maximally entangled state, written k-uniform, if all its reductions to k qudits are maximally mixed. These states form a natural generalization of N-qudits GHZ states which belong to the class 1-uniform states. We establish a link between the combinatorial notion of orthogonal arrays and k-uniform states and prove the existence of several new classes of such states for N-qudit systems. In particular, known Hadamard matrices allow us to explicitly construct 2-uniform states for an arbitrary number of N>5 qubits. We show that finding a different class of 2-uniform states would imply the Hadamard conjecture, so the full classification of 2-uniform states seems to be currently out of reach. Additionally, single vectors of another class of 2-uniform states are one-to-one related to maximal sets of mutually unbiased bases. Furthermore, we establish links between existence of k-uniform states, classical and quantum error correction codes and provide a novel graph representation for such states.Comment: 24 pages, 7 figures. Comments are very welcome

    Frequency permutation arrays

    Full text link
    Motivated by recent interest in permutation arrays, we introduce and investigate the more general concept of frequency permutation arrays (FPAs). An FPA of length n=m lambda and distance d is a set T of multipermutations on a multiset of m symbols, each repeated with frequency lambda, such that the Hamming distance between any distinct x,y in T is at least d. Such arrays have potential applications in powerline communication. In this paper, we establish basic properties of FPAs, and provide direct constructions for FPAs using a range of combinatorial objects, including polynomials over finite fields, combinatorial designs, and codes. We also provide recursive constructions, and give bounds for the maximum size of such arrays.Comment: To appear in Journal of Combinatorial Design

    Implementing Brouwer's database of strongly regular graphs

    Full text link
    Andries Brouwer maintains a public database of existence results for strongly regular graphs on n1300n\leq 1300 vertices. We implemented most of the infinite families of graphs listed there in the open-source software Sagemath, as well as provided constructions of the "sporadic" cases, to obtain a graph for each set of parameters with known examples. Besides providing a convenient way to verify these existence results from the actual graphs, it also extends the database to higher values of nn.Comment: 18 pages, LaTe
    corecore