30,591 research outputs found

    Orthogonal weighted linear L1 and L∞ approximation and applications

    Get PDF
    AbstractLet S={s1,s2,...,sn} be a set of sites in Ed, where every site si has a positive real weight ωi. This paper gives algorithms to find weighted orthogonal L∞ and L1 approximating hyperplanes for S. The algorithm for the weighted orthogonal L1 approximation is shown to require O(nd) worst-case time and O(n) space for d ≥ 2. The algorithm for the weighted orthogonal L∞ approximation is shown to require O(n log n) worst-case time and O(n) space for d = 2, and O(n⌊dl2 + 1⌋) worst-case time and O(n⌊(d+1)/2⌋) space for d > 2. In the latter case, the expected time complexity may be reduced to O(n⌊(d+1)/2⌋). The L∞ approximation algorithm can be modified to solve the problem of finding the width of a set of n points in Ed, and the problem of finding a stabbing hyperplane for a set of n hyperspheres in Ed with varying radii. The time and space complexities of the width and stabbing algorithms are seen to be the same as those of the L∞ approximation algorithm

    Numerical Homogenization of Heterogeneous Fractional Laplacians

    Get PDF
    In this paper, we develop a numerical multiscale method to solve the fractional Laplacian with a heterogeneous diffusion coefficient. When the coefficient is heterogeneous, this adds to the computational costs. Moreover, the fractional Laplacian is a nonlocal operator in its standard form, however the Caffarelli-Silvestre extension allows for a localization of the equations. This adds a complexity of an extra spacial dimension and a singular/degenerate coefficient depending on the fractional order. Using a sub-grid correction method, we correct the basis functions in a natural weighted Sobolev space and show that these corrections are able to be truncated to design a computationally efficient scheme with optimal convergence rates. A key ingredient of this method is the use of quasi-interpolation operators to construct the fine scale spaces. Since the solution of the extended problem on the critical boundary is of main interest, we construct a projective quasi-interpolation that has both dd and d+1d+1 dimensional averages over subsets in the spirit of the Scott-Zhang operator. We show that this operator satisfies local stability and local approximation properties in weighted Sobolev spaces. We further show that we can obtain a greater rate of convergence for sufficient smooth forces, and utilizing a global L2L^2 projection on the critical boundary. We present some numerical examples, utilizing our projective quasi-interpolation in dimension 2+12+1 for analytic and heterogeneous cases to demonstrate the rates and effectiveness of the method

    A comprehensive study of sparse codes on abnormality detection

    Full text link
    Sparse representation has been applied successfully in abnormal event detection, in which the baseline is to learn a dictionary accompanied by sparse codes. While much emphasis is put on discriminative dictionary construction, there are no comparative studies of sparse codes regarding abnormality detection. We comprehensively study two types of sparse codes solutions - greedy algorithms and convex L1-norm solutions - and their impact on abnormality detection performance. We also propose our framework of combining sparse codes with different detection methods. Our comparative experiments are carried out from various angles to better understand the applicability of sparse codes, including computation time, reconstruction error, sparsity, detection accuracy, and their performance combining various detection methods. Experiments show that combining OMP codes with maximum coordinate detection could achieve state-of-the-art performance on the UCSD dataset [14].Comment: 7 page

    Sard's approximation processes and oblique projections

    Get PDF
    Three problems arising in approximation theory are studied. These problems have already been studied by Arthur Sard. The main goal of this paper is to use geometrical compatibility theory to extend Sard's results and get characterizations of the sets of solutions.Fil: Corach, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Giribet, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentin
    • …
    corecore