232 research outputs found

    Orthogonal terrain guarding is NP-complete

    Get PDF

    Parameter Analysis for Guarding Terrains

    Get PDF
    The Terrain Guarding problem is a well-known variant of the famous Art Gallery problem. Only second to Art Gallery, it is the most well-studied visibility problem in Discrete and Computational Geometry, which has also attracted attention from the viewpoint of Parameterized complexity. In this paper, we focus on the parameterized complexity of Terrain Guarding (both discrete and continuous) with respect to two natural parameters. First we show that, when parameterized by the number r of reflex vertices in the input terrain, the problem has a polynomial kernel. We also show that, when parameterized by the number c of minima in the terrain, Discrete Orthogonal Terrain Guarding has an XP algorithm

    The Continuous 1.5{D} Terrain Guarding Problem: {D}iscretization, Optimal Solutions, and {PTAS}

    Get PDF
    In the NP-hard continuous 1.5D Terrain Guarding Problem (TGP) we are given an x-monotone chain of line segments in the plain (the terrain TT), and ask for the minimum number of guards (located anywhere on TT) required to guard all of TT. We construct guard candidate and witness sets G,W⊂TG, W \subset T of polynomial size, such that any feasible (optimal) guard cover G′⊆GG' \subseteq G for WW is also feasible (optimal) for the continuous TGP. This discretization allows us to: (1) settle NP-completeness for the continuous TGP; (2) provide a Polynomial Time Approximation Scheme (PTAS) for the continuous TGP using the existing PTAS for the discrete TGP by Gibson et al.; (3) formulate the continuous TGP as an Integer Linear Program (IP). Furthermore, we propose several filtering techniques reducing the size of our discretization, allowing us to devise an efficient IP-based algorithm that reliably provides optimal guard placements for terrains with up to 1000000 vertices within minutes on a standard desktop computer

    The Dispersive Art Gallery Problem

    Get PDF
    We introduce a new variant of the art gallery problem that comes from safety issues. In this variant we are not interested in guard sets of smallest cardinality, but in guard sets with largest possible distances between these guards. To the best of our knowledge, this variant has not been considered before. We call it the Dispersive Art Gallery Problem. In particular, in the dispersive art gallery problem we are given a polygon ? and a real number ?, and want to decide whether ? has a guard set such that every pair of guards in this set is at least a distance of ? apart. In this paper, we study the vertex guard variant of this problem for the class of polyominoes. We consider rectangular visibility and distances as geodesics in the L?-metric. Our results are as follows. We give a (simple) thin polyomino such that every guard set has minimum pairwise distances of at most 3. On the positive side, we describe an algorithm that computes guard sets for simple polyominoes that match this upper bound, i.e., the algorithm constructs worst-case optimal solutions. We also study the computational complexity of computing guard sets that maximize the smallest distance between all pairs of guards within the guard sets. We prove that deciding whether there exists a guard set realizing a minimum pairwise distance for all pairs of guards of at least 5 in a given polyomino is NP-complete. We were also able to find an optimal dynamic programming approach that computes a guard set that maximizes the minimum pairwise distance between guards in tree-shaped polyominoes, i.e., computes optimal solutions; due to space constraints, details can be found in the full version of our paper [Christian Rieck and Christian Scheffer, 2022]. Because the shapes constructed in the NP-hardness reduction are thin as well (but have holes), this result completes the case for thin polyominoes
    • …
    corecore