4,815 research outputs found

    False Discovery Rate Controlled Heterogeneous Treatment Effect Detection for Online Controlled Experiments

    Full text link
    Online controlled experiments (a.k.a. A/B testing) have been used as the mantra for data-driven decision making on feature changing and product shipping in many Internet companies. However, it is still a great challenge to systematically measure how every code or feature change impacts millions of users with great heterogeneity (e.g. countries, ages, devices). The most commonly used A/B testing framework in many companies is based on Average Treatment Effect (ATE), which cannot detect the heterogeneity of treatment effect on users with different characteristics. In this paper, we propose statistical methods that can systematically and accurately identify Heterogeneous Treatment Effect (HTE) of any user cohort of interest (e.g. mobile device type, country), and determine which factors (e.g. age, gender) of users contribute to the heterogeneity of the treatment effect in an A/B test. By applying these methods on both simulation data and real-world experimentation data, we show how they work robustly with controlled low False Discover Rate (FDR), and at the same time, provides us with useful insights about the heterogeneity of identified user groups. We have deployed a toolkit based on these methods, and have used it to measure the Heterogeneous Treatment Effect of many A/B tests at Snap

    Distributional Robustness of K-class Estimators and the PULSE

    Full text link
    Recently, in causal discovery, invariance properties such as the moment criterion which two-stage least square estimator leverage have been exploited for causal structure learning: e.g., in cases, where the causal parameter is not identifiable, some structure of the non-zero components may be identified, and coverage guarantees are available. Subsequently, anchor regression has been proposed to trade-off invariance and predictability. The resulting estimator is shown to have optimal predictive performance under bounded shift interventions. In this paper, we show that the concepts of anchor regression and K-class estimators are closely related. Establishing this connection comes with two benefits: (1) It enables us to prove robustness properties for existing K-class estimators when considering distributional shifts. And, (2), we propose a novel estimator in instrumental variable settings by minimizing the mean squared prediction error subject to the constraint that the estimator lies in an asymptotically valid confidence region of the causal parameter. We call this estimator PULSE (p-uncorrelated least squares estimator) and show that it can be computed efficiently, even though the underlying optimization problem is non-convex. We further prove that it is consistent. We perform simulation experiments illustrating that there are several settings including weak instrument settings, where PULSE outperforms other estimators and suffers from less variability.Comment: 85 pages, 15 figure

    Causal Relations via Econometrics

    Get PDF
    Applied econometric work takes a superficial approach to causality. Understanding economic affairs, making good policy decisions, and progress in the economic discipline depend on our ability to infer causal relations from data. We review the dominant approaches to causality in econometrics, and suggest why they fail to give good results. We feel the problem cannot be solved by traditional tools, and requires some out-of-the-box thinking. Potentially promising approaches to solutions are discussed.causality, regression, Granger Causality, Exogeneity, Cowles Commission, Hendry Methodology, Natural Experiments

    Causal Discovery with Continuous Additive Noise Models

    Get PDF
    We consider the problem of learning causal directed acyclic graphs from an observational joint distribution. One can use these graphs to predict the outcome of interventional experiments, from which data are often not available. We show that if the observational distribution follows a structural equation model with an additive noise structure, the directed acyclic graph becomes identifiable from the distribution under mild conditions. This constitutes an interesting alternative to traditional methods that assume faithfulness and identify only the Markov equivalence class of the graph, thus leaving some edges undirected. We provide practical algorithms for finitely many samples, RESIT (Regression with Subsequent Independence Test) and two methods based on an independence score. We prove that RESIT is correct in the population setting and provide an empirical evaluation

    Causal Relations via Econometrics

    Get PDF
    Applied econometric work takes a superficial approach to causality. Understanding economic affairs, making good policy decisions, and progress in the economic discipline depend on our ability to infer causal relations from data. We review the dominant approaches to causality in econometrics, and suggest why they fail to give good results. We feel the problem cannot be solved by traditional tools, and requires some out-of-the-box thinking. Potentially promising approaches to solutions are discussed.Causality, Regression, Exogeneity, Hendry Methodology, Natural Experiments

    Discovering Causal Relations and Equations from Data

    Full text link
    Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.Comment: 137 page
    • 

    corecore