1,899 research outputs found

    The (Generalized) Orthogonality Dimension of (Generalized) Kneser Graphs: Bounds and Applications

    Get PDF
    The orthogonality dimension of a graph G=(V,E)G=(V,E) over a field F\mathbb{F} is the smallest integer tt for which there exists an assignment of a vector uv∈Ftu_v \in \mathbb{F}^t with ⟨uv,uv⟩≠0\langle u_v,u_v \rangle \neq 0 to every vertex v∈Vv \in V, such that ⟨uv,uv′⟩=0\langle u_v, u_{v'} \rangle = 0 whenever vv and v′v' are adjacent vertices in GG. The study of the orthogonality dimension of graphs is motivated by various application in information theory and in theoretical computer science. The contribution of the present work is two-folded. First, we prove that there exists a constant cc such that for every sufficiently large integer tt, it is NP\mathsf{NP}-hard to decide whether the orthogonality dimension of an input graph over R\mathbb{R} is at most tt or at least 3t/2−c3t/2-c. At the heart of the proof lies a geometric result, which might be of independent interest, on a generalization of the orthogonality dimension parameter for the family of Kneser graphs, analogously to a long-standing conjecture of Stahl (J. Comb. Theo. Ser. B, 1976). Second, we study the smallest possible orthogonality dimension over finite fields of the complement of graphs that do not contain certain fixed subgraphs. In particular, we provide an explicit construction of triangle-free nn-vertex graphs whose complement has orthogonality dimension over the binary field at most n1−δn^{1-\delta} for some constant δ>0\delta >0. Our results involve constructions from the family of generalized Kneser graphs and they are motivated by the rigidity approach to circuit lower bounds. We use them to answer a couple of questions raised by Codenotti, Pudl\'{a}k, and Resta (Theor. Comput. Sci., 2000), and in particular, to disprove their Odd Alternating Cycle Conjecture over every finite field.Comment: 19 page

    Improved NP-Hardness of Approximation for Orthogonality Dimension and Minrank

    Get PDF
    The orthogonality dimension of a graph G over ? is the smallest integer k for which one can assign a nonzero k-dimensional real vector to each vertex of G, such that every two adjacent vertices receive orthogonal vectors. We prove that for every sufficiently large integer k, it is NP-hard to decide whether the orthogonality dimension of a given graph over ? is at most k or at least 2^{(1-o(1))?k/2}. We further prove such hardness results for the orthogonality dimension over finite fields as well as for the closely related minrank parameter, which is motivated by the index coding problem in information theory. This in particular implies that it is NP-hard to approximate these graph quantities to within any constant factor. Previously, the hardness of approximation was known to hold either assuming certain variants of the Unique Games Conjecture or for approximation factors smaller than 3/2. The proofs involve the concept of line digraphs and bounds on their orthogonality dimension and on the minrank of their complement

    Spectral graph theory : from practice to theory

    Get PDF
    Graph theory is the area of mathematics that studies networks, or graphs. It arose from the need to analyse many diverse network-like structures like road networks, molecules, the Internet, social networks and electrical networks. In spectral graph theory, which is a branch of graph theory, matrices are constructed from such graphs and analysed from the point of view of their so-called eigenvalues and eigenvectors. The first practical need for studying graph eigenvalues was in quantum chemistry in the thirties, forties and fifties, specifically to describe the Hückel molecular orbital theory for unsaturated conjugated hydrocarbons. This study led to the field which nowadays is called chemical graph theory. A few years later, during the late fifties and sixties, graph eigenvalues also proved to be important in physics, particularly in the solution of the membrane vibration problem via the discrete approximation of the membrane as a graph. This paper delves into the journey of how the practical needs of quantum chemistry and vibrating membranes compelled the creation of the more abstract spectral graph theory. Important, yet basic, mathematical results stemming from spectral graph theory shall be mentioned in this paper. Later, areas of study that make full use of these mathematical results, thus benefitting greatly from spectral graph theory, shall be described. These fields of study include the P versus NP problem in the field of computational complexity, Internet search, network centrality measures and control theory.peer-reviewe

    Entanglement-assisted zero-error source-channel coding

    Get PDF
    We study the use of quantum entanglement in the zero-error source-channel coding problem. Here, Alice and Bob are connected by a noisy classical one-way channel, and are given correlated inputs from a random source. Their goal is for Bob to learn Alice's input while using the channel as little as possible. In the zero-error regime, the optimal rates of source codes and channel codes are given by graph parameters known as the Witsenhausen rate and Shannon capacity, respectively. The Lov\'asz theta number, a graph parameter defined by a semidefinite program, gives the best efficiently-computable upper bound on the Shannon capacity and it also upper bounds its entanglement-assisted counterpart. At the same time it was recently shown that the Shannon capacity can be increased if Alice and Bob may use entanglement. Here we partially extend these results to the source-coding problem and to the more general source-channel coding problem. We prove a lower bound on the rate of entanglement-assisted source-codes in terms Szegedy's number (a strengthening of the theta number). This result implies that the theta number lower bounds the entangled variant of the Witsenhausen rate. We also show that entanglement can allow for an unbounded improvement of the asymptotic rate of both classical source codes and classical source-channel codes. Our separation results use low-degree polynomials due to Barrington, Beigel and Rudich, Hadamard matrices due to Xia and Liu and a new application of remote state preparation.Comment: Title has been changed. Previous title was 'Zero-error source-channel coding with entanglement'. Corrected an error in Lemma 1.
    • …
    corecore