2,031 research outputs found

    Orthogonal LTE two-tier Cellular Networks

    No full text
    International audienceIn previous works, Vandermonde-subspace fre- quency division multiplexing (VFDM) has been shown to promote overlay networks by enabling a secondary transmitter to cancel its interference to a primary receiver, while simultaneously transmitting useful information to its own receiver at non- negligible rates. Interference cancelation is achieved by exploiting the null-space of the channel from the secondary transmitter to the primary receiver. In the wake of a global deployment of the third generation partnership project's (3GPP) long term evolution (LTE), one of the open questions of VFDM concerns its applicability in a primary LTE-orthogonal frequency division multiple access (OFDMA) multi-user setting. In this work, we address this question by extending VFDM to the multi-user scenario where the primary system employs OFDMA, such as LTE. We show that by using at the secondary system a similar precoder structure to the ones previously introduced, we are able to cancel the interference towards multiple primary receivers while still achieving acceptable rates for the secondary system

    Modeling, Analysis and Design for Carrier Aggregation in Heterogeneous Cellular Networks

    Full text link
    Carrier aggregation (CA) and small cells are two distinct features of next-generation cellular networks. Cellular networks with small cells take on a very heterogeneous characteristic, and are often referred to as HetNets. In this paper, we introduce a load-aware model for CA-enabled \textit{multi}-band HetNets. Under this model, the impact of biasing can be more appropriately characterized; for example, it is observed that with large enough biasing, the spectral efficiency of small cells may increase while its counterpart in a fully-loaded model always decreases. Further, our analysis reveals that the peak data rate does not depend on the base station density and transmit powers; this strongly motivates other approaches e.g. CA to increase the peak data rate. Last but not least, different band deployment configurations are studied and compared. We find that with large enough small cell density, spatial reuse with small cells outperforms adding more spectrum for increasing user rate. More generally, universal cochannel deployment typically yields the largest rate; and thus a capacity loss exists in orthogonal deployment. This performance gap can be reduced by appropriately tuning the HetNet coverage distribution (e.g. by optimizing biasing factors).Comment: submitted to IEEE Transactions on Communications, Nov. 201

    Coalitional Games with Overlapping Coalitions for Interference Management in Small Cell Networks

    Full text link
    In this paper, we study the problem of cooperative interference management in an OFDMA two-tier small cell network. In particular, we propose a novel approach for allowing the small cells to cooperate, so as to optimize their sum-rate, while cooperatively satisfying their maximum transmit power constraints. Unlike existing work which assumes that only disjoint groups of cooperative small cells can emerge, we formulate the small cells' cooperation problem as a coalition formation game with overlapping coalitions. In this game, each small cell base station can choose to participate in one or more cooperative groups (or coalitions) simultaneously, so as to optimize the tradeoff between the benefits and costs associated with cooperation. We study the properties of the proposed overlapping coalition formation game and we show that it exhibits negative externalities due to interference. Then, we propose a novel decentralized algorithm that allows the small cell base stations to interact and self-organize into a stable overlapping coalitional structure. Simulation results show that the proposed algorithm results in a notable performance advantage in terms of the total system sum-rate, relative to the noncooperative case and the classical algorithms for coalitional games with non-overlapping coalitions

    Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks

    Full text link
    Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given SINR, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.Comment: IEEE Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550 - 560, Apr. 201
    • …
    corecore