52 research outputs found

    Performances of Hybrid Amplitude Shape Modulation for UWB Communications Systems over AWGN Channel in a Single and Multi-User Environment

    Get PDF
    This paper analyzes the performance of the hybrid Amplitude Shape Modulation (h-ASM) scheme for the time-hopping ultra-wideband (TH-UWB) communication systems in the single and multi-user environment. h-ASM is the combination of Pulse Amplitude Modulation (PAM) and Pulse Shape Modulation (PSM) based on modified Hermite pulses (MHP). This scheme is suitable for high rate data transmission applications because b = log2(MN) bits can be mapped with one waveform. The channel capacity and error probability over AWGN channel are derived and compared with other modulation schemes

    Approximation of L\"owdin Orthogonalization to a Spectrally Efficient Orthogonal Overlapping PPM Design for UWB Impulse Radio

    Full text link
    In this paper we consider the design of spectrally efficient time-limited pulses for ultrawideband (UWB) systems using an overlapping pulse position modulation scheme. For this we investigate an orthogonalization method, which was developed in 1950 by Per-Olov L\"owdin. Our objective is to obtain a set of N orthogonal (L\"owdin) pulses, which remain time-limited and spectrally efficient for UWB systems, from a set of N equidistant translates of a time-limited optimal spectral designed UWB pulse. We derive an approximate L\"owdin orthogonalization (ALO) by using circulant approximations for the Gram matrix to obtain a practical filter implementation. We show that the centered ALO and L\"owdin pulses converge pointwise to the same Nyquist pulse as N tends to infinity. The set of translates of the Nyquist pulse forms an orthonormal basis or the shift-invariant space generated by the initial spectral optimal pulse. The ALO transform provides a closed-form approximation of the L\"owdin transform, which can be implemented in an analog fashion without the need of analog to digital conversions. Furthermore, we investigate the interplay between the optimization and the orthogonalization procedure by using methods from the theory of shift-invariant spaces. Finally we develop a connection between our results and wavelet and frame theory.Comment: 33 pages, 11 figures. Accepted for publication 9 Sep 201

    M-ary energy detection of a Gaussian FSK UWB system

    Get PDF
    The energy detection M-ary Gaussian frequency-shift keying (FSK) system is proposed in this paper. The system performance is analyzed in additive white Gaussian noise channels, multipath channels, and in the presence of synchronization errors. The numerical results show that the M-ary modulation achieves the higher data rate than the binary modulation. However, it also results in performance degradation

    M-ary energy detection of a Gaussian FSK UWB system

    Get PDF
    The energy detection M-ary Gaussian frequency-shift keying (FSK) system is proposed in this paper. The system performance is analyzed in additive white Gaussian noise channels, multipath channels, and in the presence of synchronization errors. The numerical results show that the M-ary modulation achieves the higher data rate than the binary modulation. However, it also results in performance degradation

    Design of Complex Wavelet Pulses Enabling PSK Modulation for UWB Impulse Radio Communications

    Full text link
    In this paper, we present the design of complex Ultra-wideband (UWB) pulses which enables the phase-shift keying (PSK) modulation for UWB Impulse Radio (IR) Communications. Two classes of complex UWB pulses are proposed based on complex Gaussian wavelets and complex rational orthogonal wavelets respectively. Formulas in closed form are derived for a full control of the time and frequency properties of the designed UWB pulses. The system characterisation of the complex UWB pulse-based PSK modulation and demodulation is presented.A novel PSK demodulator based on complex wavelet signalling is adopted for its unique robustness against timing jitter. Besides the inherent advantages of PSK modulation which lead to high power efficiency and high data rate, the proposed PSK scheme in the UWB communication context provides a more flexible way to construct new UWB modulation schemes by combining PSK with other basic modulation options such as the pulse amplitude modulation (PAM) and the pulse position modulation (PPM). In addition, based on the derived formulas, the proposed UWB pulse design method also provides a solution to the construction of multiband UWB systems

    Transceiver design and system optimization for ultra-wideband communications

    Get PDF
    This dissertation investigates the potential promises and proposes possible solutions to the challenges of designing transceivers and optimizing system parameters in ultra-wideband (UWB) systems. The goal is to provide guidelines for UWB transceiver implementations under constraints by regulation, existing interference, and channel estimation. New UWB pulse shapes are invented that satisfy the Federal Communications Commission spectral mask. Parameters are designed to possibly implement the proposed pulses. A link budget is quantified based on an accurate frequency-dependent path loss calculation to account for variations across the ultra-wide bandwidth of the signal. Achievable information rates are quantified as a function of transmission distance over additive white Gaussian noise and multipath channels under specific UWB constraints: limited power spectral density, specific modulation formats, and a highly dispersive channel. The effect of self-interference (SI) and inter-symbol interference (ISI) on channel capacity is determined, and modulation formats that mitigate against this effect is identified. Spreading gains of familiar UWB signaling formats are evaluated, and UWB signals are proved to be spread spectrum. Conditions are formulated for trading coding gain with spreading gain with only a small impact on performance. Numerical results are examined to demonstrate that over a frequency-selective channel, the spreading gain may be beneficial in reducing the SI and ISI resulting in higher information rates. A reduced-rank adaptive filtering technique is applied to the problem of interference suppression and optimum combining in UWB communications. The reduced-rank combining method, in particular the eigencanceler, is proposed and compared with a minimum mean square error Rake receiver. Simulation results are evaluated to show that the performance of the proposed method is superior to the minimum mean square error when the correlation matrix is estimated from limited data. Impact of channel estimation on UWB system performance is investigated when path delays and path amplitudes are jointly estimated. Cramér-Rao bound (CRB) expressions for the variance of path delay and amplitude estimates are formulated using maximum likelihood estimation. Using the errors obtained from the CRB, the effective signal-to-noise ratio for UWB Rake receivers employing maximum ratio combining (MRC) is devised in the presence of channel path delay and amplitude errors. An exact expression of the bit error rate (BER) for UWB Rake receivers with MRC is derived with imperfect estimates of channel path delays and amplitudes. Further, this analysis is applied to design optimal transceiver parameters. The BER is used as part of a binary symmetric channel and the achievable information rates are evaluated. The optimum power allocation and number of symbols allocated to the pilot are developed with respect to maximizing the information rate. The optimal signal bandwidth to be used for UWB communications is determined in the presence of imperfect channel state information. The number of multipath components to be collected by Rake receivers is designed to optimize performance with non-ideal channel estimation

    Performance Evaluation of Adaptive Continuous Wavelet Transform based Rake Receiver for UWB Systems

    Get PDF
    This paper proposes an adaptive continuous wavelet transform (ACWT) based Rake receiver to mitigate interference for high speed ultra wideband (UWB) transmission. The major parts of the receiver are least mean square (LMS) adaptive equalizer and N-selective maximum ratio combiner (MRC). The main advantage of using continuous wavelet rake receiver is that it utilizes the maximum bandwidth (7.5GHz) of the UWB transmitted signal, as announced by the Federal Communication Commission (FCC). In the proposed ACWT Rake receiver, the weights and the finger positions are updated depending upon the convergence error over a period in which training data is transmitted. Line of sight (LOS) channel model (CM1 from 0 to 4 meters) and the Non line of sight (NLOS) channel models (CM, CM3 and CM4) are the indoor channel models selected for investigating in this research . The performance of the proposed adaptive system   is evaluated by comparing with conventional rake and continuous wavelet transform (CWT) based rake. It showed an improved performance in all the different UWB channels (CM1 to CM4) for rake fingers of 2, 4 and 8. Simulations showed that for 8 rake fingers, the proposed adaptive CWT rake receiver has shown an SNR improvement of 2dB, 3dB, 10dB and 2dB respectively over CWT rake receiver in different UWB channels CM1, CM2, CM3 and CM4

    Spectral balancing techniques application to CDMA and UWB signaling

    No full text
    International audienceThis paper presents techniques for generating orthogonal bases of signals with jointly optimized spectra, in the sense that they are made as close as possible. To this end, we propose new criteria, the minimization of which leads to signals with close energy inside a set of prescribed subbands. We present a first algorithm that performs this spectrum balancing and that we apply to Walsh-Hadamard codes. As an example, we build balanced Walsh codes in CDMA comunications. Alternatively, we propose another way to perform spectrum balancing in two steps and that makes use of joint diagonalization techniques. As an example application, we show how balancing of Prolate Spheroidal Wave Functions (PSWFs) can be used to build orthogonal families of brief impulses with flat spectra that are of potential interest for Ultra Wide Band (UWB) communications
    corecore