2,522 research outputs found

    Lorenz-Mie theory for 2D scattering and resonance calculations

    Full text link
    This PhD tutorial is concerned with a description of the two-dimensional generalized Lorenz-Mie theory (2D-GLMT), a well-established numerical method used to compute the interaction of light with arrays of cylindrical scatterers. This theory is based on the method of separation of variables and the application of an addition theorem for cylindrical functions. The purpose of this tutorial is to assemble the practical tools necessary to implement the 2D-GLMT method for the computation of scattering by passive scatterers or of resonances in optically active media. The first part contains a derivation of the vector and scalar Helmholtz equations for 2D geometries, starting from Maxwell's equations. Optically active media are included in 2D-GLMT using a recent stationary formulation of the Maxwell-Bloch equations called steady-state ab initio laser theory (SALT), which introduces new classes of solutions useful for resonance computations. Following these preliminaries, a detailed description of 2D-GLMT is presented. The emphasis is placed on the derivation of beam-shape coefficients for scattering computations, as well as the computation of resonant modes using a combination of 2D-GLMT and SALT. The final section contains several numerical examples illustrating the full potential of 2D-GLMT for scattering and resonance computations. These examples, drawn from the literature, include the design of integrated polarization filters and the computation of optical modes of photonic crystal cavities and random lasers.Comment: This is an author-created, un-copyedited version of an article published in Journal of Optics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Entanglement properties of bound and resonant few-body states

    Full text link
    Studying the physics of quantum correlations has gained new interest after it has become possible to measure entanglement entropies of few body systems in experiments with ultracold atomic gases. Apart from investigating trapped atom systems, research on correlation effects in other artificially fabricated few-body systems, such as quantum dots or electromagnetically trapped ions, is currently underway or in planning. Generally, the systems studied in these experiments may be considered as composed of a small number of interacting elements with controllable and highly tunable parameters, effectively described by Schr\"odinger equation. In this way, parallel theoretical and experimental studies of few-body models become possible, which may provide a deeper understanding of correlation effects and give hints for designing and controlling new experiments. Of particular interest is to explore the physics in the strongly correlated regime and in the neighborhood of critical points. Particle correlations in nanostructures may be characterized by their entanglement spectrum, i.e. the eigenvalues of the reduced density matrix of the system partitioned into two subsystems. We will discuss how to determine the entropy of entanglement spectrum of few-body systems in bound and resonant states within the same formalism. The linear entropy will be calculated for a model of quasi-one dimensional Gaussian quantum dot in the lowest energy states. We will study how the entanglement depends on the parameters of the system, paying particular attention to the behavior on the border between the regimes of bound and resonant states.Comment: 22 pages, 3 figure
    • …
    corecore