751 research outputs found

    Orthogonal Diagonal Projections for Gait Recognition

    Full text link
    Gait has received much attention from researchers in the vi-sion field due to its utility in walker identification. One of the key issues in gait recognition is how to extract discriminative shape features from 2D human silhouette images. This paper deals with the problem of gait-based walker recognition using statistical shape features. First, we normalize walkers ā€™ silhou-ettes (to facilitate gait feature comparison) into a square form and use the orthogonal projections in the positive and negative diagonal directions to draw personal signatures contained in gait patterns. Then principal component analysis (PCA) and linear discriminant analysis (LDA) are applied to reduce the dimensionality of original gait features and to improve the topological structure in the feature space. Finally, this paper accomplishes the recognition of unknown gait features based on the nearest neighbor rule, with the discussion of the effect of distance metrics and scales on discriminating performance. Experimental results justify the potential of our method. Index Terms ā€” Gait, PCA, LDA, shape, metric, scale 1

    Automated design of robust discriminant analysis classifier for foot pressure lesions using kinematic data

    Get PDF
    In the recent years, the use of motion tracking systems for acquisition of functional biomechanical gait data, has received increasing interest due to the richness and accuracy of the measured kinematic information. However, costs frequently restrict the number of subjects employed, and this makes the dimensionality of the collected data far higher than the available samples. This paper applies discriminant analysis algorithms to the classification of patients with different types of foot lesions, in order to establish an association between foot motion and lesion formation. With primary attention to small sample size situations, we compare different types of Bayesian classifiers and evaluate their performance with various dimensionality reduction techniques for feature extraction, as well as search methods for selection of raw kinematic variables. Finally, we propose a novel integrated method which fine-tunes the classifier parameters and selects the most relevant kinematic variables simultaneously. Performance comparisons are using robust resampling techniques such as Bootstrap632+632+and k-fold cross-validation. Results from experimentations with lesion subjects suffering from pathological plantar hyperkeratosis, show that the proposed method can lead tosim96sim 96%correct classification rates with less than 10% of the original features

    Two-dimensional approximately harmonic projection for gait recognition

    Get PDF
    This paper presents a two-dimensional approximately harmonic projection (2DAHP) algorithm for gait recognition. 2DAHP is originated from the approximately harmonic projection (AHP), while 2DAHP offers some advantages over AHP. 1) 2DAHP can preserve the local geometrical structure and cluster structure of image data as AHP. 2) 2DAHP encodes images as matrices or second-order tensors rather than one-dimensional vectors, so 2DAHP can keep the correlation among different coordinates of image data. 3) 2DAHP avoids the singularity problem suffered by AHP. 4) 2DAHP runs faster than AHP. Extensive experiments on gait recognition show the effectiveness and efficiency of the proposed method

    Pose Invariant Gait Analysis And Reconstruction

    Get PDF
    One of the unique advantages of human gait is that it can be perceived from a distance. A varied range of research has been undertaken within the field of gait recognition. However, in almost all circumstances subjects have been constrained to walk fronto-parallel to the camera with a single walking speed. In this thesis we show that gait has sufficient properties that allows us to exploit the structure of articulated leg motion within single view sequences, in order to remove the unknown subject pose and reconstruct the underlying gait signature, with no prior knowledge of the camera calibration. Articulated leg motion is approximately planar, since almost all of the perceived motion is contained within a single limb swing plane. The variation of motion out of this plane is subtle and negligible in comparison to this major plane of motion. Subsequently, we can model human motion by employing a cardboard person assumption. A subject's body and leg segments may be represented by repeating spatio-temporal motion patterns within a set of bilaterally symmetric limb planes. The static features of gait are defined as quantities that remain invariant over the full range of walking motions. In total, we have identified nine static features of articulated leg motion, corresponding to the fronto-parallel view of gait, that remain invariant to the differences in the mode of subject motion. These features are hypothetically unique to each individual, thus can be used as suitable parameters for biometric identification. We develop a stratified approach to linear trajectory gait reconstruction that uses the rigid bone lengths of planar articulated leg motion in order to reconstruct the fronto-parallel view of gait. Furthermore, subject motion commonly occurs within a fixed ground plane and is imaged by a static camera. In general, people tend to walk in straight lines with constant velocity. Imaged gait can then be split piecewise into natural segments of linear motion. If two or more sufficiently different imaged trajectories are available then the calibration of the camera can be determined. Subsequently, the total pattern of gait motion can be globally parameterised for all subjects within an image sequence. We present the details of a sparse method that computes the maximum likelihood estimate of this set of parameters, then conclude with a reconstruction error analysis corresponding to an example image sequence of subject motion

    Performance comparison of intrusion detection systems and application of machine learning to Snort system

    Get PDF
    This study investigates the performance of two open source intrusion detection systems (IDSs) namely Snort and Suricata for accurately detecting the malicious traffic on computer networks. Snort and Suricata were installed on two different but identical computers and the performance was evaluated at 10 Gbps network speed. It was noted that Suricata could process a higher speed of network traffic than Snort with lower packet drop rate but it consumed higher computational resources. Snort had higher detection accuracy and was thus selected for further experiments. It was observed that the Snort triggered a high rate of false positive alarms. To solve this problem a Snort adaptive plug-in was developed. To select the best performing algorithm for Snort adaptive plug-in, an empirical study was carried out with different learning algorithms and Support Vector Machine (SVM) was selected. A hybrid version of SVM and Fuzzy logic produced a better detection accuracy. But the best result was achieved using an optimised SVM with firefly algorithm with FPR (false positive rate) as 8.6% and FNR (false negative rate) as 2.2%, which is a good result. The novelty of this work is the performance comparison of two IDSs at 10 Gbps and the application of hybrid and optimised machine learning algorithms to Snort

    A Survey on Biometrics and Cancelable Biometrics Systems

    Get PDF
    Now-a-days, biometric systems have replaced the password or token based authentication system in many fields to improve the security level. However, biometric system is also vulnerable to security threats. Unlike password based system, biometric templates cannot be replaced if lost or compromised. To deal with the issue of the compromised biometric template, template protection schemes evolved to make it possible to replace the biometric template. Cancelable biometric is such a template protection scheme that replaces a biometric template when the stored template is stolen or lost. It is a feature domain transformation where a distorted version of a biometric template is generated and matched in the transformed domain. This paper presents a review on the state-of-the-art and analysis of different existing methods of biometric based authentication system and cancelable biometric systems along with an elaborate focus on cancelable biometrics in order to show its advantages over the standard biometric systems through some generalized standards and guidelines acquired from the literature. We also proposed a highly secure method for cancelable biometrics using a non-invertible function based on Discrete Cosine Transformation (DCT) and Huffman encoding. We tested and evaluated the proposed novel method for 50 users and achieved good results

    Data-independent vs. data-dependent dimension reduction for pattern recognition in high dimensional spaces

    Get PDF
    There has been a rapid emergence of new pattern recognition/classification techniques in a variety of real world applications over the last few decades. In most of the pattern recognition/classification applications, the pattern of interest is modelled by a data vector/array of very high dimension. The main challenges in such applications are related to the efficiency of retrieval, analysis, and verifying/classifying the pattern/object of interest. The ā€œCurse of Dimensionā€ is a reference to these challenges and is commonly addressed by Dimension Reduction (DR) techniques. Several DR techniques has been developed and implemented in a variety of applications. The most common DR schemes are dependent on a dataset of ā€œtypical samplesā€ (e.g. the Principal Component Analysis (PCA), and Linear Discriminant Analysis (LDA)). However, data-independent DR schemes (e.g. Discrete Wavelet Transform (DWT), and Random Projections (RP)) are becoming more desirable due to lack of density ratio of samples to dimension. In this thesis, we critically review both types of techniques, and highlight advantages and disadvantages in terms of efficiency and impact on recognition accuracy. We shall study the theoretical justification for the existence of DR transforms that preserve, within tolerable error, distances between would be feature vectors modelling objects of interest. We observe that data-dependent DRs do not specifically attempts to preserve distances, and the problems of overfitting and biasness are consequences of low density ratio of samples to dimension. Accordingly, the focus of our investigations is more on data-independent DR schemes and in particular on the different ways of generating RPs as an efficient DR tool. RPs suitable for pattern recognition applications are only restricted by a lower bound on the reduced dimension that depends on the tolerable error. Besides, the known RPs that are generated in accordance to some probability distributions, we investigate and test the performance of differently constructed over-complete Hadamard mxn (m<<n) submatrices, using the inductive Sylvester and Walsh-Paley methods. Our experimental work conducted for 2 case studies (Speech Emotion Recognition (SER) and Gait-based Gender Classification (GBGC)) demonstrate that these matrices perform as well, if not better, than data-dependent DR schemes. Moreover, dictionaries obtained by sampling the top rows of Walsh Paley matrices outperform matrices constructed more randomly but this may be influenced by the type of biometric and/or recognition schemes. We shall, also propose the feature-block (FB) based DR as an innovative way to overcome the problem of low density ratio applications and demonstrate its success for the SER case study
    • ā€¦
    corecore