52 research outputs found

    Orness For Idempotent Aggregation Functions

    Get PDF
    Aggregation functions are mathematical operators that merge given data in order to obtain a global value that preserves the information given by the data as much as possible. In most practical applications, this value is expected to be between the infimum and the supremum of the given data, which is guaranteed only when the aggregation functions are idempotent. Ordered weighted averaging (OWA) operators are particular cases of this kind of function, with the particularity that the obtained global value depends on neither the source nor the expert that provides each datum, but only on the set of values. They have been classified by means of the ornessa measurement of the proximity of an OWA operator to the OR-operator. In this paper, the concept of orness is extended to the framework of idempotent aggregation functions defined both on the real unit interval and on a complete lattice with a local finiteness condition.This work has been partially supported by the research projects MTM2015-63608-P of the Spanish Government and IT974-16 of the Basque Government

    Orness for idempotent aggregation functions

    Get PDF
    Aggregation functions are mathematical operators that merge given data in order to obtain a global value that preserves the information given by the data as much as possible. In most practical applications, this value is expected to be between the infimum and the supremum of the given data, which is guaranteed only when the aggregation functions are idempotent. Ordered weighted averaging (OWA) operators are particular cases of this kind of function, with the particularity that the obtained global value depends on neither the source nor the expert that provides each datum, but only on the set of values. They have been classified by means of the orness—a measurement of the proximity of an OWA operator to the OR-operator. In this paper, the concept of orness is extended to the framework of idempotent aggregation functions defined both on the real unit interval and on a complete lattice with a local finiteness condition.This work has been partially supported by the research projects MTM2015-63608-P of the Spanish Government and IT974-16 of the Basque Government

    Consensus image method for unknown noise removal

    Get PDF
    Noise removal has been, and it is nowadays, an important task in computer vision. Usually, it is a previous task preceding other tasks, as segmentation or reconstruction. However, for most existing denoising algorithms the noise model has to be known in advance. In this paper, we introduce a new approach based on consensus to deal with unknown noise models. To do this, different filtered images are obtained, then combined using multifuzzy sets and averaging aggregation functions. The final decision is made by using a penalty function to deliver the compromised image. Results show that this approach is consistent and provides a good compromise between filters.This work is supported by the European Commission under Contract No. 238819 (MIBISOC Marie Curie ITN). H. Bustince was supported by Project TIN 2010-15055 of the Spanish Ministry of Science

    Multivariate integration of functions depending explicitly on the minimum and the maximum of the variables

    Get PDF
    By using some basic calculus of multiple integration, we provide an alternative expression of the integral ]a,b[nf(x,minxi,maxxi)dx, \int_{]a,b[^n} f(\mathbf{x},\min x_i,\max x_i) d\mathbf{x}, in which the minimum and the maximum are replaced with two single variables. We demonstrate the usefulness of that expression in the computation of orness and andness average values of certain aggregation functions. By generalizing our result to Riemann-Stieltjes integrals, we also provide a method for the calculation of certain expected values and distribution functions.Comment: 15 page

    Generalized Bonferroni mean operators in multi-criteria aggregation

    Full text link
    In this paper we provide a systematic investigation of a family of composed aggregation functions which generalize the Bonferroni mean. Such extensions of the Bonferroni mean are capable of modeling the concepts of hard and soft partial conjunction and disjunction as well as that of k-tolerance and k-intolerance. There are several interesting special cases with quite an intuitive interpretation for application

    Fuzzy Aggregators - an Overview

    Get PDF
    The article deals with mathematical formalism of the process of combining several inputs into a single output in fuzzy inteligent systems, the process known as aggregation. We are interested in logic aggregation operators. Such aggregators are present in most decision problems and in fuzzy expert systems. Fuzzy inteligent systems are equipped with aggregation operators (aggregators) with which reasoning models adapt well to human reasoning. A brief overview of the field of fuzzy aggregators is given. Attention is devoted to so called graded logic aggregators.. The role of fuzzy agregators in modelling reasoning and the way they are chosen in modelling are pointed out. The conclusions are given and research in the field is pointed out

    "The connection between distortion risk measures and ordered weighted averaging operators"

    Get PDF
    Distortion risk measures summarize the risk of a loss distribution by means of a single value. In fuzzy systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted Averaging (WOWA) operators are used to aggregate a large number of fuzzy rules into a single value. We show that these concepts can be derived from the Choquet integral, and then the mathematical relationship between distortion risk measures and the OWA and WOWA operators for discrete and nite random variables is presented. This connection oers a new interpretation of distortion risk measures and, in particular, Value-at-Risk and Tail Value-at-Risk can be understood from an aggregation operator perspective. The theoretical results are illustrated in an example and the degree of orness concept is discussed.Fuzzy systems; Degree of orness; Risk quantification; Discrete random variable JEL classification:C02,C60

    Fitting fuzzy measures by linear programming. Programming library fmtools

    Full text link
    We discuss the problem of learning fuzzy measures from empirical data. Values of the discrete Choquet integral are fitted to the data in the least absolute deviation sense. This problem is solved by linear programming techniques. We consider the cases when the data are given on the numerical and interval scales. An open source programming library which facilitates calculations involving fuzzy measures and their learning from data is presented. <br /
    corecore