418 research outputs found

    Differentiating Sensitivity of Post-Stimulus Undershoot under Diffusion Weighting: Implication of Vascular and Neuronal Hierarchy

    Get PDF
    The widely used blood oxygenation level dependent (BOLD) signal during brain activation, as measured in typical fMRI methods, is composed of several distinct phases, the last of which, and perhaps the least understood, is the post-stimulus undershoot. Although this undershoot has been consistently observed, its hemodynamic and metabolic sources are still under debate, as evidences for sustained blood volume increases and metabolic activities have been presented. In order to help differentiate the origins of the undershoot from vascular and neuronal perspectives, we applied progressing diffusion weighting gradients to investigate the BOLD signals during visual stimulation. Three distinct regions were established and found to have fundamentally different properties in post-stimulus signal undershoot. The first region, with a small but focal spatial extent, shows a clear undershoot with decreasing magnitude under increasing diffusion weighting, which is inferred to represent intravascular signal from larger vessels with large apparent diffusion coefficients (ADC), or high mobility. The second region, with a large continuous spatial extent in which some surrounds the first region while some spreads beyond, also shows a clear undershoot but no change in undershoot amplitude with progressing diffusion weighting. This would indicate a source based on extravascular and small vessel signal with smaller ADC, or lower mobility. The third region shows no significant undershoot, and is largely confined to higher order visual areas. Given their intermediate ADC, it would likely include both large and small vessels. Thus the consistent observation of this third region would argue against a vascular origin but support a metabolic basis for the post-stimulus undershoot, and would appear to indicate a lack of sustained metabolic rate likely due to a lower oxygen metabolism in these higher visual areas. Our results are the first, to our knowledge, to suggest that the post-stimulus undershoots have a spatial dependence on the vascular and neuronal hierarchy, and that progressing flow-sensitized diffusion weighting can help delineate these dependences

    A novel method of combining blood oxygenation and blood flow sensitive magnetic resonance imaging techniques to measure the cerebral blood flow and oxygen metabolism responses to an unknown neural stimulus.

    Get PDF
    Simultaneous implementation of magnetic resonance imaging methods for Arterial Spin Labeling (ASL) and Blood Oxygenation Level Dependent (BOLD) imaging makes it possible to quantitatively measure the changes in cerebral blood flow (CBF) and cerebral oxygen metabolism (CMRO(2)) that occur in response to neural stimuli. To date, however, the range of neural stimuli amenable to quantitative analysis is limited to those that may be presented in a simple block or event related design such that measurements may be repeated and averaged to improve precision. Here we examined the feasibility of using the relationship between cerebral blood flow and the BOLD signal to improve dynamic estimates of blood flow fluctuations as well as to estimate metabolic-hemodynamic coupling under conditions where a stimulus pattern is unknown. We found that by combining the information contained in simultaneously acquired BOLD and ASL signals through a method we term BOLD Constrained Perfusion (BCP) estimation, we could significantly improve the precision of our estimates of the hemodynamic response to a visual stimulus and, under the conditions of a calibrated BOLD experiment, accurately determine the ratio of the oxygen metabolic response to the hemodynamic response. Importantly we were able to accomplish this without utilizing a priori knowledge of the temporal nature of the neural stimulus, suggesting that BOLD Constrained Perfusion estimation may make it feasible to quantitatively study the cerebral metabolic and hemodynamic responses to more natural stimuli that cannot be easily repeated or averaged

    Cerebral tissue pO2 response to stimulation is preserved with age in awake mice

    Full text link
    Published in final edited form as: Neurosci Lett. 2019 April 23; 699: 160–166. doi:10.1016/j.neulet.2019.02.007.Compromised oxygen supply to cerebral tissue could be an important mechanism contributing to age-related cognition decline. We recently showed in awake mice that resting cerebral tissue pO2 decreases with age, a phenomenon that manifests mainly after middle-age. To extend these findings, here we aimed to study how tissue pO2 response to neuronal stimulation is affected by aging. We used two-photon phosphorescence lifetime microscopy to directly measure the brain tissue pO2 response to whisker stimulation in healthy awake young, middle-aged and old mice. We show that despite a decrease in baseline tissue pO2, the amplitude of the tissue pO2 response to stimulation is well preserved with age. However, the response dynamics are altered towards a slower response with reduced post-stimulus undershoot in older ages, possibly due to stiffer vessel wall among other factors. An estimation of the net oxygen consumption rate using a modified Krogh model suggests that the O2 overshoot during stimulation may be necessary to secure a higher capillary O2 delivery to the tissue proportional to increased CMRO2 to maintain the capillary tissue pO2. It was observed that the coupling between the CMRO2 and capillary O2 delivery is preserved with age.Accepted manuscrip

    Vascular Origins of BOLD and CBV fMRI Signals: Statistical Mapping and Histological Sections Compared

    Get PDF
    Comparison of 3T blood oxygenation level dependent (BOLD) and cerebral blood volume (CBV) activation maps to histological sections enables the spatial discrimination of functional magnetic resonance imaging (fMRI) signal changes into different vascular compartments. We use a standard gradient echo–echo planar imaging technique to measure BOLD signal changes in the somatosensory cortex in response to whisker stimulation. Corresponding changes in CBV were estimated following the infusion of a super-paramagnetic contrast agent. We imaged in a tangential imaging plane that covered the cortical surface. Images were associated with post mortem histological sections showing both the surface vasculature and cytochrome oxidase stained whisker barrel cortex. We found a significant BOLD signal change in the large draining veins which occurred in the absence of a corresponding CBV change. Results suggest that in the venous drainage system, ~3mm distant from the area of activity, there is a robust change in blood oxygen saturation with little or no volume change. CBV changes are localised over the somatosensory barrel cortex and overlying arterial supply, supporting the theory that CBV changes are greater in the arterial than in the venous vasculature. This work investigating BOLD signal and underlying hemodynamics provides more information on the vascular origins of these important neuroimaging signals

    Post-stimulus fMRI and EEG responses: evidence for a neuronal origin hypothesised to be inhibitory

    Get PDF
    Post-stimulus undershoots, negative responses following cessation of stimulation, are widely observed in functional magnetic resonance (fMRI) blood oxygenation level dependent (BOLD) data. However, the debate surrounding whether the origin of this response phase is neuronal or vascular, and whether it provides functionally relevant information, that is additional to what is contained in primary response, means that undershoots are widely overlooked. We simultaneously recorded electroencephalography (EEG), BOLD and cerebral blood-flow (CBF) [obtained from arterial spin labelled (ASL) fMRI] fMRI responses to hemifield checkerboard stimulation to test the potential neural origin of the fMRI post-stimulus undershoot. The post-stimulus BOLD and CBF signal amplitudes in both contralateral and ipsilateral visual cortex depended on the post-stimulus power of the 8-13 Hz (alpha) EEG neuronal activity, such that trials with highest EEG power showed largest fMRI undershoots in contralateral visual cortex. This correlation in post-stimulus EEG-fMRI responses was not predicted by the primary response amplitude. In the contralateral visual cortex we observed a decrease in both cerebral rate of oxygen metabolism (CMRO2) and CBF during the post-stimulus phase. In addition, the coupling ratio (n) between CMRO2 and CBF was significantly lower during the positive contralateral primary response phase compared with the post-stimulus phase and we propose that this reflects an altered balance of excitatory and inhibitory neuronal activity. Together our data provide strong evidence that the post-stimulus phase of the BOLD response has a neural origin which reflects, at least partially, an uncoupling of the neuronal responses driving the primary and post-stimulus responses, explaining the uncoupling of the signals measured in the two response phases. We suggest our results are consistent with inhibitory processes driving the post-stimulus EEG and fMRI responses. We therefore propose that new methods are required to model the post-stimulus and primary responses independently, enabling separate investigation of response phases in cognitive function and neurological disease

    The Possible Role of CO2 in Producing A Post-Stimulus CBF and BOLD Undershoot

    Get PDF
    Comprehending the underlying mechanisms of neurovascular coupling is important for understanding the pathogenesis of neurodegenerative diseases related to uncoupling. Moreover, it elucidates the casual relation between the neural signaling and the hemodynamic responses measured with various imaging modalities such as functional magnetic resonance imaging (fMRI). There are mainly two hypotheses concerning this mechanism: a metabolic hypothesis and a neurogenic hypothesis. We have modified recent models of neurovascular coupling adding the effects of both NO (nitric oxide) kinetics, which is a well-known neurogenic vasodilator, and CO2 kinetics as a metabolic vasodilator. We have also added the Hodgkin–Huxley equations relating the membrane potentials to sodium influx through the membrane. Our results show that the dominant factor in the hemodynamic response is NO, however CO2 is important in producing a brief post-stimulus undershoot in the blood flow response that in turn modifies the fMRI blood oxygenation level-dependent post-stimulus undershoot. Our results suggest that increased cerebral blood flow during stimulation causes CO2 washout which then results in a post-stimulus hypocapnia induced vasoconstrictive effect

    Physiologically informed dynamic causal modeling of fMRI data

    Get PDF
    AbstractThe functional MRI (fMRI) signal is an indirect measure of neuronal activity. In order to deconvolve the neuronal activity from the experimental fMRI data, biophysical generative models have been proposed describing the link between neuronal activity and the cerebral blood flow (the neurovascular coupling), and further the hemodynamic response and the BOLD signal equation. These generative models have been employed both for single brain area deconvolution and to infer effective connectivity in networks of multiple brain areas. In the current paper, we introduce a new fMRI model inspired by experimental observations about the physiological underpinnings of the BOLD signal and compare it with the generative models currently used in dynamic causal modeling (DCM), a widely used framework to study effective connectivity in the brain. We consider three fundamental aspects of such generative models for fMRI: (i) an adaptive two-state neuronal model that accounts for a wide repertoire of neuronal responses during and after stimulation; (ii) feedforward neurovascular coupling that links neuronal activity to blood flow; and (iii) a balloon model that can account for vascular uncoupling between the blood flow and the blood volume. Finally, we adjust the parameterization of the BOLD signal equation for different magnetic field strengths. This paper focuses on the form, motivation and phenomenology of DCMs for fMRI and the characteristics of the various models are demonstrated using simulations. These simulations emphasize a more accurate modeling of the transient BOLD responses — such as adaptive decreases to sustained inputs during stimulation and the post-stimulus undershoot. In addition, we demonstrate using experimental data that it is necessary to take into account both neuronal and vascular transients to accurately model the signal dynamics of fMRI data. By refining the models of the transient responses, we provide a more informed perspective on the underlying neuronal process and offer new ways of inferring changes in local neuronal activity and effective connectivity from fMRI

    Interpreting Oxygenation-Based Neuroimaging Signals: The Importance and the Challenge of Understanding Brain Oxygen Metabolism

    Get PDF
    Functional magnetic resonance imaging is widely used to map patterns of brain activation based on blood oxygenation level dependent (BOLD) signal changes associated with changes in neural activity. However, because oxygenation changes depend on the relative changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO2), a quantitative interpretation of BOLD signals, and also other functional neuroimaging signals related to blood or tissue oxygenation, is fundamentally limited until we better understand brain oxygen metabolism and how it is related to blood flow. However, the positive side of the complexity of oxygenation signals is that when combined with dynamic CBF measurements they potentially provide the best tool currently available for investigating the dynamics of CMRO2. This review focuses on the problem of interpreting oxygenation-based signals, the challenges involved in measuring CMRO2 in general, and what is needed to put oxygenation-based estimates of CMRO2 on a firm foundation. The importance of developing a solid theoretical framework is emphasized, both as an essential tool for analyzing oxygenation-based multimodal measurements, and also potentially as a way to better understand the physiological phenomena themselves. The existing data, integrated within a simple theoretical framework of O2 transport, suggests the hypothesis that an important functional role of the mismatch of CBF and CMRO2 changes with neural activation is to prevent a fall of tissue pO2. Future directions for better understanding brain oxygen metabolism are discussed

    Mapping cortical responses to somatosensory stimuli in human infants with simultaneous near-infrared spectroscopy and event-related potential recording

    Get PDF
    Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) have recently provided fundamental new information about how the newborn brain processes innocuous and noxious somatosensory information. However, results derived independently from these two techniques are not entirely consistent, raising questions about the relationship between hemodynamic and electrophysiological responses in the study of touch and pain processing in the newborn. To address this, we have recorded NIRS and EEG responses simultaneously for the first time in the human infant following noxious (time-locked clinically required heel lances) and innocuous tactile cutaneous stimulation in 30 newborn infants. The results show that both techniques can be used to record quantifiable and distinct innocuous and noxious evoked activity at a group level in the newborn cortex. Noxious stimulation elicits a peak hemodynamic response that is 10-fold larger than that elicited by an innocuous stimulus (HbO2: 2.0 vs 0.3 µm) and a distinct nociceptive-specific N3P3 waveform in electrophysiological recordings. However, a novel single-trial analysis revealed that hemodynamic and electrophysiological responses do not always co-occur at an individual level, although when they do (64% of noxious test occasions), they are significantly correlated in magnitude. These data show that, while hemodynamic and electrophysiological touch and pain brain activity in newborn infants are comparable in group analyses, important individual differences remain. These data indicate that integrated and multimodal brain monitoring is required to understand central touch and pain processing in the newborn
    corecore