45 research outputs found

    47th Rocky Mountain Conference on Analytical Chemistry

    Get PDF
    Final program, abstracts, and information about the 47th annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-endorsed by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Denver, Colorado, July 31 - August 4, 2005

    Vibrational Probe and Methods Development for Studying the Ultrafast Dynamics of Preferential Solvation of Biomolecules by 2D-IR.

    Full text link
    Over the last decade two-dimensional infrared spectroscopy (2D-IR) has emerged as a powerful method for the investigation of biological samples and their dynamics. Through the implementation of state of the art signal processing methods we have demonstrated a significant, 20-fold, reduction in the acquisition time of traditional 2D-IR spectra. This new technique, utilizing compressed sensing, compliments our previously developed RASD method, allowing for the rapid acquisition of complete 2D-IR spectra as opposed to dynamical information at a single excitation-detection frequency pair. Additionally we have realized the first biocompatible, modular, metal-carbonyl probes for 2D-IR utilizing benzyl-chromium tribarbonyls. This has enabled ultrafast 2D-IR investigations of lipids and preferential solvation in solutions and at site-specific locations within enzyme scaffolds. In aqueous solutions we find that preferential solvation by a polar cosolvent causes a slowdown of the observed dynamics sensed by our probes. From modeling our system this slowdown is found to be consistent with arising from the slow, ca. 8 ps, exchange dynamics between the polar co-solute and water in the vicinity of our probe. This interpretation of preferential solvation in solution is further able to describe the observed dynamical differences found at the protein-solvent interface in a model system. By studying a series of protein mutants we find, spectroscopically and through simulations, that interactions between the side chains and the solution are sufficient to modulate the degree of preferential solvation and therefore dynamics, within specific sites of the protein. This information provides a foundation on how to modulate of the diffusion of substrates and products into and out-of the active sites of enzymes, through directed mutation of their protein sequence. The diffusional motion of the solvent and substrates is often the rate-limiting step in enzymatic catalysis. By controlling the local solvation dynamics of enzymes, sequence mutations offer a method to fine-tune the dynamics of enzymes. The ability to characterize the site-specific solvation dynamics of enzymes in response to primary structure mutations, positions 2D-IR and our chromium tricarbonyl probes as powerful tools for understanding protein and enzyme dynamics. This provides insight into controlling the catalytic rate of enzymes through directed mutation.PhDBiophysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111440/1/josefd_1.pd

    43rd Rocky Mountain Conference on Analytical Chemistry

    Get PDF
    Final program, abstracts, and information about the 43rd annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-sponsored by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Denver, Colorado, July 29 - August 2, 2001

    Flowing matter

    Get PDF
    This open access book, published in the Soft and Biological Matter series, presents an introduction to selected research topics in the broad field of flowing matter, including the dynamics of fluids with a complex internal structure -from nematic fluids to soft glasses- as well as active matter and turbulent phenomena.Flowing matter is a subject at the crossroads between physics, mathematics, chemistry, engineering, biology and earth sciences, and relies on a multidisciplinary approach to describe the emergence of the macroscopic behaviours in a system from the coordinated dynamics of its microscopic constituents.Depending on the microscopic interactions, an assembly of molecules or of mesoscopic particles can flow like a simple Newtonian fluid, deform elastically like a solid or behave in a complex manner. When the internal constituents are active, as for biological entities, one generally observes complex large-scale collective motions. Phenomenology is further complicated by the invariable tendency of fluids to display chaos at the large scales or when stirred strongly enough. This volume presents several research topics that address these phenomena encompassing the traditional micro-, meso-, and macro-scales descriptions, and contributes to our understanding of the fundamentals of flowing matter.This book is the legacy of the COST Action MP1305 “Flowing Matter”

    56th Annual Rocky Mountain Conference on Magnetic Resonance

    Get PDF
    Final program, abstracts, and information about the 56th annual meeting of the Rocky Mountain Conference on Magnetic Resonance, co-endorsed by the Colorado Section of the American Chemical Society and the Society for Applied Spectroscopy. Held in Copper Mountain, Colorado, July 13-17, 2014

    Summaries of FY 1997 Research in the Chemical Sciences

    Get PDF
    The objective of this program is to expand, through support of basic research, knowledge of various areas of chemistry, physics and chemical engineering with a goal of contributing to new or improved processes for developing and using domestic energy resources in an efficient and environmentally sound manner. Each team of the Division of Chemical Sciences, Fundamental Interactions and Molecular Processes, is divided into programs that cover the various disciplines. Disciplinary areas where research is supported include atomic, molecular, and optical physics; physical, inorganic, and organic chemistry; chemical energy, chemical physics; photochemistry; radiation chemistry; analytical chemistry; separations science; heavy element chemistry; chemical engineering sciences; and advanced battery research. However, traditional disciplinary boundaries should not be considered barriers, and multi-disciplinary efforts are encouraged. In addition, the program supports several major scientific user facilities. The following summaries describe the programs

    Report / Institute fĂĽr Physik

    Get PDF
    The 2016 Report of the Physics Institutes of the Universität Leipzig presents a hopefully interesting overview of our research activities in the past year. It is also testimony of our scientific interaction with colleagues and partners worldwide. We are grateful to our guests for enriching our academic year with their contributions in the colloquium and within our work groups

    42nd Rocky Mountain Conference on Analytical Chemistry

    Get PDF
    Abstracts from the 42nd annual meeting of the Rocky Mountain Conference on Analytical Chemistry, co-sponsored by the Colorado Section of the American Chemical Society and the Rocky Mountain Section of the Society for Applied Spectroscopy. Held in Broomfield, Colorado, July 30 - August 3, 2000

    Second IEEE/LEOS Benelux Chapter, November 26th, 1997, Eindhoven University of Technology, The Netherlands

    Get PDF

    Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    Full text link
    corecore