1,693 research outputs found

    Digital Technologies for Teaching English as a Foreign/Second Language: a collective monograph

    Get PDF
    Колективна монографія розкриває різні аспекти використання цифрових технологій у навчанні англійської мови як іноземної/другої мови (цифровий сторітелінг, мобільні застосунки, інтерактивне навчання і онлайн-ігри, тощо) та надає освітянам і дослідникам ресурс для збагачення їхньої професійної діяльності. Окрема увага приділена цифровим інструментам для впровадження соціально-емоційного навчання та інклюзивної освіти на уроках англійської мови. Для вчителів англійської мови, методистів, викладачів вищих закладів освіти, науковців, здобувачів вищої освіти

    AI-based design methodologies for hot form quench (HFQ®)

    Get PDF
    This thesis aims to develop advanced design methodologies that fully exploit the capabilities of the Hot Form Quench (HFQ®) stamping process in stamping complex geometric features in high-strength aluminium alloy structural components. While previous research has focused on material models for FE simulations, these simulations are not suitable for early-phase design due to their high computational cost and expertise requirements. This project has two main objectives: first, to develop design guidelines for the early-stage design phase; and second, to create a machine learning-based platform that can optimise 3D geometries under hot stamping constraints, for both early and late-stage design. With these methodologies, the aim is to facilitate the incorporation of HFQ capabilities into component geometry design, enabling the full realisation of its benefits. To achieve the objectives of this project, two main efforts were undertaken. Firstly, the analysis of aluminium alloys for stamping deep corners was simplified by identifying the effects of corner geometry and material characteristics on post-form thinning distribution. New equation sets were proposed to model trends and design maps were created to guide component design at early stages. Secondly, a platform was developed to optimise 3D geometries for stamping, using deep learning technologies to incorporate manufacturing capabilities. This platform combined two neural networks: a geometry generator based on Signed Distance Functions (SDFs), and an image-based manufacturability surrogate model. The platform used gradient-based techniques to update the inputs to the geometry generator based on the surrogate model's manufacturability information. The effectiveness of the platform was demonstrated on two geometry classes, Corners and Bulkheads, with five case studies conducted to optimise under post-stamped thinning constraints. Results showed that the platform allowed for free morphing of complex geometries, leading to significant improvements in component quality. The research outcomes represent a significant contribution to the field of technologically advanced manufacturing methods and offer promising avenues for future research. The developed methodologies provide practical solutions for designers to identify optimal component geometries, ensuring manufacturing feasibility and reducing design development time and costs. The potential applications of these methodologies extend to real-world industrial settings and can significantly contribute to the continued advancement of the manufacturing sector.Open Acces

    Modern meat: the next generation of meat from cells

    Get PDF
    Modern Meat is the first textbook on cultivated meat, with contributions from over 100 experts within the cultivated meat community. The Sections of Modern Meat comprise 5 broad categories of cultivated meat: Context, Impact, Science, Society, and World. The 19 chapters of Modern Meat, spread across these 5 sections, provide detailed entries on cultivated meat. They extensively tour a range of topics including the impact of cultivated meat on humans and animals, the bioprocess of cultivated meat production, how cultivated meat may become a food option in Space and on Mars, and how cultivated meat may impact the economy, culture, and tradition of Asia

    Visual localisation of electricity pylons for power line inspection

    Get PDF
    Inspection of power infrastructure is a regular maintenance event. To date the inspection process has mostly been done manually, but there is growing interest in automating the process. The automation of the inspection process will require an accurate means for the localisation of the power infrastructure components. In this research, we studied the visual localisation of a pylon. The pylon is the most prominent component of the power infrastructure and can provide a context for the inspection of the other components. Point-based descriptors tend to perform poorly on texture less objects such as pylons, therefore we explored the localisation using convolutional neural networks and geometric constraints. The crossings of the pylon, or vertices, are salient points on the pylon. These vertices aid with recognition and pose estimation of the pylon. We were successfully able to use a convolutional neural network for the detection of the vertices. A model-based technique, geometric hashing, was used to establish the correspondence between the stored pylon model and the scene object. We showed the effectiveness of the method as a voting technique to determine the pose estimation from a single image. In a localisation framework, the method serves as the initialization of the tracking process. We were able to incorporate an extended Kalman filter for subsequent incremental tracking of the camera relative to the pylon. Also, we demonstrated an alternative tracking using heatmap details from the vertex detection. We successfully demonstrated the proposed algorithms and evaluated their effectiveness using a model pylon we built in the laboratory. Furthermore, we revalidated the results on a real-world outdoor electricity pylon. Our experiments illustrate that model-based techniques can be deployed as part of the navigation aspect of a robot

    Neural Semantic Surface Maps

    Full text link
    We present an automated technique for computing a map between two genus-zero shapes, which matches semantically corresponding regions to one another. Lack of annotated data prohibits direct inference of 3D semantic priors; instead, current State-of-the-art methods predominantly optimize geometric properties or require varying amounts of manual annotation. To overcome the lack of annotated training data, we distill semantic matches from pre-trained vision models: our method renders the pair of 3D shapes from multiple viewpoints; the resulting renders are then fed into an off-the-shelf image-matching method which leverages a pretrained visual model to produce feature points. This yields semantic correspondences, which can be projected back to the 3D shapes, producing a raw matching that is inaccurate and inconsistent between different viewpoints. These correspondences are refined and distilled into an inter-surface map by a dedicated optimization scheme, which promotes bijectivity and continuity of the output map. We illustrate that our approach can generate semantic surface-to-surface maps, eliminating manual annotations or any 3D training data requirement. Furthermore, it proves effective in scenarios with high semantic complexity, where objects are non-isometrically related, as well as in situations where they are nearly isometric

    Metaverse. Old urban issues in new virtual cities

    Get PDF
    Recent years have seen the arise of some early attempts to build virtual cities, utopias or affective dystopias in an embodied Internet, which in some respects appear to be the ultimate expression of the neoliberal city paradigma (even if virtual). Although there is an extensive disciplinary literature on the relationship between planning and virtual or augmented reality linked mainly to the gaming industry, this often avoids design and value issues. The observation of some of these early experiences - Decentraland, Minecraft, Liberland Metaverse, to name a few - poses important questions and problems that are gradually becoming inescapable for designers and urban planners, and allows us to make some partial considerations on the risks and potentialities of these early virtual cities

    Neural Reflectance Decomposition

    Get PDF
    Die Erstellung von fotorealistischen Modellen von Objekten aus Bildern oder Bildersammlungen ist eine grundlegende Herausforderung in der Computer Vision und Grafik. Dieses Problem wird auch als inverses Rendering bezeichnet. Eine der größten Herausforderungen bei dieser Aufgabe ist die vielfältige Ambiguität. Der Prozess Bilder aus 3D-Objekten zu erzeugen wird Rendering genannt. Allerdings beeinflussen sich mehrere Eigenschaften wie Form, Beleuchtung und die Reflektivität der Oberfläche gegenseitig. Zusätzlich wird eine Integration dieser Einflüsse durchgeführt, um das endgültige Bild zu erzeugen. Die Umkehrung dieser integrierten Abhängigkeiten ist eine äußerst schwierige und mehrdeutige Aufgabenstellung. Die Lösung dieser Aufgabe ist jedoch von entscheidender Bedeutung, da die automatisierte Erstellung solcher wieder beleuchtbaren Objekte verschiedene Anwendungen in den Bereichen Online-Shopping, Augmented Reality (AR), Virtual Reality (VR), Spiele oder Filme hat. In dieser Arbeit werden zwei Ansätze zur Lösung dieser Aufgabe beschrieben. Erstens wird eine Netzwerkarchitektur vorgestellt, die die Erfassung eines Objekts und dessen Materialien von zwei Aufnahmen ermöglicht. Der Grad der Blicksynthese von diesen Objekten ist jedoch begrenzt, da bei der Dekomposition nur eine einzige Perspektive verwendet wird. Daher wird eine zweite Reihe von Ansätzen vorgeschlagen, bei denen eine Sammlung von 360 Grad verteilten Bildern in die Form, Reflektanz und Beleuchtung gespalten werden. Diese Multi-View-Bilder werden pro Objekt optimiert. Das resultierende Objekt kann direkt in handelsüblicher Rendering-Software oder in Spielen verwendet werden. Wir erreichen dies, indem wir die aktuelle Forschung zu neuronalen Feldern erweitern Reflektanz zu speichern. Durch den Einsatz von Volumen-Rendering-Techniken können wir ein Reflektanzfeld aus natürlichen Bildsammlungen ohne jegliche Ground Truth (GT) Überwachung optimieren. Die von uns vorgeschlagenen Methoden erreichen eine erstklassige Qualität der Dekomposition und ermöglichen neuartige Aufnahmesituationen, in denen sich Objekte unter verschiedenen Beleuchtungsbedingungen oder an verschiedenen Orten befinden können, was üblich für Online-Bildsammlungen ist.Creating relightable objects from images or collections is a fundamental challenge in computer vision and graphics. This problem is also known as inverse rendering. One of the main challenges in this task is the high ambiguity. The creation of images from 3D objects is well defined as rendering. However, multiple properties such as shape, illumination, and surface reflectiveness influence each other. Additionally, an integration of these influences is performed to form the final image. Reversing these integrated dependencies is highly ill-posed and ambiguous. However, solving the task is essential, as automated creation of relightable objects has various applications in online shopping, augmented reality (AR), virtual reality (VR), games, or movies. In this thesis, we propose two approaches to solve this task. First, a network architecture is discussed, which generalizes the decomposition of a two-shot capture of an object from large training datasets. The degree of novel view synthesis is limited as only a singular perspective is used in the decomposition. Therefore, the second set of approaches is proposed, which decomposes a set of 360-degree images. These multi-view images are optimized per object, and the result can be directly used in standard rendering software or games. We achieve this by extending recent research on Neural Fields, which can store information in a 3D neural volume. Leveraging volume rendering techniques, we can optimize a reflectance field from in-the-wild image collections without any ground truth (GT) supervision. Our proposed methods achieve state-of-the-art decomposition quality and enable novel capture setups where objects can be under varying illumination or in different locations, which is typical for online image collections

    Advanced Characterization and On-Line Process Monitoring of Additively Manufactured Materials and Components

    Get PDF
    This reprint is concerned with the microstructural characterization and the defect analysis of metallic additively manufactured (AM) materials and parts. Special attention is paid to the determination of residual stress in such parts and to online monitoring techniques devised to predict the appearance of defects. Finally, several non-destructive testing techniques are employed to assess the quality of AM materials and parts

    Spatial Modeling of Compact Polarimetric Synthetic Aperture Radar Imagery

    Get PDF
    The RADARSAT Constellation Mission (RCM) utilizes compact polarimetric (CP) mode to provide data with varying resolutions, supporting a wide range of applications including oil spill detection, sea ice mapping, and land cover analysis. However, the complexity and variability of CP data, influenced by factors such as weather conditions and satellite infrastructure, introduce signature ambiguity. This ambiguity poses challenges in accurate object classification, reducing discriminability and increasing uncertainty. To address these challenges, this thesis introduces tailored spatial models in CP SAR imagery through the utilization of machine learning techniques. Firstly, to enhance oil spill monitoring, a novel conditional random field (CRF) is introduced. The CRF model leverages the statistical properties of CP SAR data and exploits similarities in labels and features among neighboring pixels to effectively model spatial interactions. By mitigating the impact of speckle noise and accurately distinguishing oil spill candidates from oil-free water, the CRF model achieves successful results even in scenarios where the availability of labeled samples is limited. This highlights the capability of CRF in handling situations with a scarcity of training data. Secondly, to improve the accuracy of sea ice mapping, a region-based automated classification methodology is developed. This methodology incorporates learned features, spatial context, and statistical properties from various SAR modes, resulting in enhanced classification accuracy and improved algorithmic efficiency. Thirdly, the presence of a high degree of heterogeneity in target distribution presents an additional challenge in land cover mapping tasks, further compounded by signature ambiguity. To address this, a novel transformer model is proposed. The transformer model incorporates both fine- and coarse-grained spatial dependencies between pixels and leverages different levels of features to enhance the accuracy of land cover type detection. The proposed approaches have undergone extensive experimentation in various remote sensing tasks, validating their effectiveness. By introducing tailored spatial models and innovative algorithms, this thesis successfully addresses the inherent complexity and variability of CP data, thereby ensuring the accuracy and reliability of diverse applications in the field of remote sensing

    AirLine: Efficient Learnable Line Detection with Local Edge Voting

    Full text link
    Line detection is widely used in many robotic tasks such as scene recognition, 3D reconstruction, and simultaneous localization and mapping (SLAM). Compared to points, lines can provide both low-level and high-level geometrical information for downstream tasks. In this paper, we propose a novel edge-based line detection algorithm, AirLine, which can be applied to various tasks. In contrast to existing learnable endpoint-based methods which are sensitive to the geometrical condition of environments, AirLine can extract line segments directly from edges, resulting in a better generalization ability for unseen environments. Also to balance efficiency and accuracy, we introduce a region-grow algorithm and local edge voting scheme for line parameterization. To the best of our knowledge, AirLine is one of the first learnable edge-based line detection methods. Our extensive experiments show that it retains state-of-the-art-level precision yet with a 3-80 times runtime acceleration compared to other learning-based methods, which is critical for low-power robots
    corecore